Loop Computation




Loop computation

® Consider a m-point one-loop diagram with n external momenta

oy = m[m@

® The integral to compute is

N ()
DDy ... Dy s

d?l



Integrand reduction

('t Key Point )

® Any one-loop integral can be decomposed in scalar integrals

® The task is to find these coefficients efficiently (analytically or

; numerically) )
A Y2

o MR =N BoXigiy i
Tadpole; = [ d ZD- i0<i1<iz<is
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1 + Z Ciyiyi, Lriangle; ; .
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. 1 + Z a;, Tadpole;_
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* Available in computer libraries (FF [v. Oldenborgh], QCDLoop [Eliis,

Zanderiihi‘, OneLOOE ‘v. Hameren“



Divergences

® The a,b,c,dand R coefficients depend only on
external parameters and momenta

1-1
MO = Z Uigiyinis BOXigiyigis D; = (l+p;)?—m?
10<t1<t2<13 . 1
i Tadpole, = /d l
+ Z Cigiyi, LriaNgle; ;4 0 D;,
.= 1
to<t1 <tz Bubble;,;, = [ dl
ubble;,;, Di Dy,
+ Z bioilBubbleioil . J 1
s Trlangleioiliz = [ d Z—DioDilDig
. 1
—|_ Z aﬂlo TadeIeZO BOXi0i1i2i3 - ddl Dio Dil Diz Di3
10
+R + O(e)

= The coefficients d, ¢, b and a are finite and do not contain poles in |/e

= The |/e dependence is in the scalar integrals (and the UV renormalization)

=»Divergencies related to the Real
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Standard Approach

4 N

® Passarino-Veltman reduction:

N () 1
dl > ff; | d*
/ DoD1Ds - Dy ;COG /d " DoD; -

® Reduce a general integral to “scalar integrals™ by “completing
the square”
\ - Y




Standard Approach

4 )
® Passarino-Veltman reduction:
N(1) 1
d?i > ) coeff; / d?
/ DoD1Dsa -+ Dyy—q z; Z DoDy - - -
® Reduce a general integral to “scalar integrals” by “completing
N the square” y
4 )
® |ets do an example:
Suppose we want to calculate this triangle integral
q
p+q / "] ”
. m{)((1 +p)* = m3)(( + q)* — m3)
o /




Passarino-Veltman

Main Idea , » )
/ (2m)™ (12 = m7)((L + p)* — m3)((L + q)? — m3)

® The only independent four vectors are p¥ and gH . Therefore,
the integral must be proportional to those.We can set-up a
system of linear equations.




Passarino-Veltman

-

Main Idea

/ d"l [#
(2m)™ (12 = mi)((L +p)? = m3)((L + q) — m3)

® The only independent four vectors are p¥ and gH . Therefore,
the integral must be proportional to those.We can set-up a
system of linear equations.

/ d"l [~ (o qu)(cl
2m)™ (12 = mP)((I +p)? —m3)((1 4+ ¢)? — m3) &




Passarino-Veltman

Main Idea , " )
/ (2m)™ (12 = m3) (L +p)? = m3)(( + q)? —m3)

® The only independent four vectors are p¥ and gH . Therefore,
the integral must be proportional to those.VVe can set-up a
system of linear equations.

"l s o o[ O
L /<2w>n<z2—m%><<z+p>2—m3><<z+q>2—m§>‘“’ ! )(Cz)

KRGSO|UtiOﬂ (dropping the mass)
® contracting with 20" and 2¢*




Passarino-Veltman

Main Idea

/ d"l [#
(2m)™ (12 = mi)((L +p)? = m3)((L + q) — m3)

® The only independent four vectors are p¥ and gH . Therefore,
the integral must be proportional to those.VVe can set-up a
system of linear equations.

/ d"l [H (o qu)(cl
L (2m)" (12 = mP)(( +p)? = m3)(( + q)* — m3) G2

KRGSO|UtiOﬂ (dropping the mass)
® contracting with 20" and 2¢*
[ 2-p
(

2m)™ 12(I4p)? (I+q)?




Passarino-Veltman

Main Idea

/ d"l [#
(2m)™ (12 = mi)((L +p)* —m3)(( + ¢)* — m3)

® The only independent four vectors are p¥ and gH . Therefore,
the integral must be proportional to those.VVe can set-up a
system of linear equations.

/ A"l I (o qu)(cl
_ (2m)" (12 = mi) (L +p)? —m3)((L + q)* —m3) C2

/Resolution (dropping the mass)
® contracting with 20" and 2¢*
20-p] = | (d”l 2-p

2m)™ 12(I4p)? (I+q)?




Passarino-Veltman

Main Idea , " )
/ (2m)™ (12 = m3) (L +p)? = m3)(( + q)? —m3)

® The only independent four vectors are p¥ and gH . Therefore,
the integral must be proportional to those.VVe can set-up a
system of linear equations.

"l s o o[ O
/<2w>n<z2—m%><<z+p> g R R G )(Oz)

o

/Resolution (dropping the mass)
® contracting with 20" and 2¢*

d"l 21
2L-Pl = | Gmy P

(2 ) ()
\_ /
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Passarino-Veltman

Main Idea , " )
/ (2m)™ (12 = m3) (L +p)? = m3)(( + q)? —m3)

® The only independent four vectors are p¥ and gH . Therefore,
the integral must be proportional to those.VVe can set-up a
system of linear equations.

"l s o o[ O
/<zw>n<z2—m%><<z+p> g R R G )(Oz)

o

[RGSO|UtiOI’l (dropping the mass)
® contracting with 20" and 2¢*

d"l 21
2L-Pl = | Gmy P

<2pu>(pﬂqu)(01) _( 2p-p 2p-q Ci
2q, Cy 2pq 26](] CQ




Passarino-Veltman

Main Idea , " )
/ (2m)™ (12 = m3) (L +p)? = m3)(( + q)? —m3)

® The only independent four vectors are p¥ and gH . Therefore,
the integral must be proportional to those.VVe can set-up a
system of linear equations.

"l s o o[ O
/<zw>n<z2—m%><<z+p> g R R G )(Oz)

o

[RGSO|UtiOI’l (dropping the mass)
® contracting with 20" and 2¢*

d"l 21
2L-Pl = | Gmy P

(e (&) - (5% 20) (@) -(87)
\_ J
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Passarino-Veltman

Main Idea

/ d"l [#
(2m)™ (12 = mi)((L +p)? = m3)((L + q) — m3)

® The only independent four vectors are p¥ and gH . Therefore,
the integral must be proportional to those.We can set-up a
system of linear equations.

/ d"l [~ (o qu)(cl
L 2m)™ (12 = mP)((I +p)? —m3)((1 4+ ¢)? — m3) &

[Resolution (dropping the mass)
® contracting with 2p* and 2¢*

dnl 2l
209l =] (2m)™ l2(l+p)2]zl+Q)2

(3 )wn(2) - (R ) (57

\_ Gram Determinant: G




Passarino-Veltman

fResqution (dropping the mass)
® contracting with 2*p and 2*q

n 2.

2l-p]=J (gdw)ln p<z+p>f<’z+q>2

" o\ Ch\ _
() () - (R (%)

N\

Gram Determinant: G




Passarino-Veltman

(Resolution (dropping the mass)
® contracting with 2*p and 2*q

d"l 2l
2091 =/ (2m)™ l2(l+p)2}Zl+q)2

\_ Gram Determinant: G

()v o (4) - () )- (5

/Resolution (dropping the mass)
® cxpress the integral as simpler integral

/ d"l 2l - p _/ d*l (I+p)? — 1% - p?
Cmm 2 +p)2(l+q)? ) (2" 2(1+p)2(l + q)?

AN




Passarino-Veltman

fResqution (dropping the mass)

® contracting with 2*p and 2*q
20-p

2091 = | o rumreror

Ch ) _ ( 21 - p]
Co [QZ'Q]

\_ Gram Determinant: G

)

[Resolution (dropping the mass)

® cxpress the integral as simpler integral

/ d"l 2l - p _/ d*l (I+p)? — 1% - p?
Cmm 2 +p)2(l+q)? ) (2" 2(1+p)2(l + q)?

1

AN

N\

_/d”l 1 _/d"l 1 _Q/dnz
“J e U+ ) G e+ T ) @or BU+ 020+ )

/




Passarino-Veltman

fResqution (dropping the mass)
® contracting with 2*p and 2*q

d”l 21
200 = | Gor emmr @

Ch ) _ ( 20 - p]
Co 21 - q]

\_ Gram Determinant: G

)

fResqution (dropping the mass)
° express the integral as simpler integral

d"l 2 -p d”l l—l—p 2 _p?
)7 12(1+ p)2(L + )2 l+q

Scalar Integral: Know analytically

AN




Passarino-Veltman

/Resolution (dropping the mass)
® contracting with 2*p and 2*q

2l p f (d”l 2l-p

2m)™ 12(14+p)2 (I+q)?

[ )orm (&) =-(8; REED)

\_ Gram Determinant: G




Passarino-Veltman

/Resolution (dropping the mass)
® contracting with 2*p and 2*q

d"l 2l
2091 =/ (2m)™ l2(l+p)2}Zl+qz)2

() o (3) -( o)

[21 - p]
21 - q]

)

\_ Gram Determinant: G




Passarino-Veltman

/Resolution (dropping the mass)
® contracting with 2*p and 2*q

d"l 21-
2001 =] wor e

() () - (Ea) ) -

\_ Gram Determinant: G

/Final Step

® [nverting the Gram Determinant ( - ) = G! ( 2L p] )

Co

® \We have an expression in term of scalar integral

dnl I N e
/(W P ==y (P ¢ )(02)
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OPP Reduction

/0 The decomposition to scalar Y A

integrals presented before works
at the level of the integrals

1-loo
MTTOP = E iy inia BOXigiyigis
10<11<12<13
+ g Cigiyi, Lrlangle; ; ;.
10<t1 <12
+ E bioilBubbleioil
10<t1

+ Z a;, Tadpole;

10

+R + O(e)




OPP Reduction

The decomposition to scalar
integrals presented before works
at the level of the integrals

1-loo
M = E iiyinis BOXigiyinis
10<11<12<13
+ g CioiligTrlangleioilig
10<t1 <12
+ E bioilBUbbleioil
10<t1

+ Z a;, Tadpole;

10

+R + O(e)

\

6 If we would know a similar relation at\

the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing
the integrals




OPP Reduction

-

The decomposition to scalar h
integrals presented before works
at the level of the integrals

1-loo
M = E iiyinis BOXigiyinis
10<11<12<13
+ g CioiligTrlangleioilig
10<t1 <12
+ E bioilBUbbleioil
10<t1

+ Z a;, Tadpole;

10

+R + O(e)

€ If we would know a similar relation at )
the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing
the integrals

m—1 m—1
NI = ) [dz‘oz‘mis + digiyigis (l)} D;
10 <11 <12<13 1#£10,%1,12,13
m—1 m—1
+ Z [Cioiﬂé + Cigivia (l)} H D;
10<11 <19 ’i#io,il,ig
m—1 ~ m—1
+ Z {bz’oil +bi0i1(l)i| H D;
10<11 1#£10,11
m—1 m—1
+ Z {aio + &io(l)] H D;
io i#io




OPP Reduction

-

The decomposition to scalar h
integrals presented before works
at the level of the integrals

Ml—loop — d.

Zoiligig

2

10<11<12<13

+ g Cigiyis Trlangleioilig
10<t1 <12

+ E bioilBubbleioil
10<t1

+ Z a;, Tadpole;

10

Boxyi;iqis

+R + O(e)

6 If we would know a similar relation at\

the integrals

m—1

2.

10<t1 <12<13

N (1)

10 <21 <19

+ Z [O

10 <%1

m—1
+ Z {aio
0

0102122

[ ’L0217,2’L3

m 1

’L

z;ﬁzo i1

-1
11 o

i£io

Spurious ter

the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing

M)




sSpurious terms

® The functional form of the spurious terms is known (it depends on the

rank of the integral and the number of propagators in the loop) [del
Aguila, Pittau 2004]

® for example, a box coefficient from a rank | numerator is

~ ~

— . . . . UPOo JUa VPO
d20212223 (l) _ d’to’tlw’bs € l P1P2P3
(remember that p; is the sum of the momentum that has entered the
loop so far, so we always have po = 0)
® [he integral is zero

g7 digivizis (1) _ = /ddf””p” I“pipeps _

DoDiDyDs lotrizis DoD1 Dy D5




How 1t works...

4 )

m—1 m—1
N(l) — Z [dioi1’i2i3 + di0i1i2i3 (Z)] D%
10<11<12<13 17#10,%1,%2,%3
m—1 m—1
+ Z [Cz‘oz‘m + Cigiyis (l)} D;
10<i1<ig 1#£10,11,%2
m—1
+ Z |: ’1,0’1,1 —i_b’LoZl i| H D’L
7/0<711 7’#7:077:1
m—1 m—1
+ Z [aio + ay, (l)} H D;,
io iio
~ m—1
+P(1) 1] D




How 1t works...

m—1 ~ m—1
N(l) — Z [d’ioi1’i2i3 + di0i1i2’i3 (l)] D;
7:O<7:1 <’l,2<?,3 i#i07i1ai27i3
m—1 m—1
+ Z |:Ci0i1i2 + Cigiyis (l)} H D;
10<i1<ig 1#£10,11,%2

+ mz_:l [bioil + Bz’oil(l)} ﬁl D;

4 )
To solve the OPP reduction,
choosing special values for the
loop momenta helps a lot

N\ J

io<i1 i#i0,i1
m—1 m—1
+ Z [aio + a;, (l)} H D;
io i#io
m—1
+P(1) 1] D
J




How 1t works...

-

To solve the OPP reduction,
choosing special values for the
loop momenta helps a lot

\

For example, choosing | such that
Do(IF) = D1(IF) =
= Dy(IF) = D3(IF) =0

sets all the terms in this equation
to zero except the first line

4 I
m—1 ~ m—1
N(l) — Z [d’ioil’iﬂé + di0i1i2i3 (l)] D;
10<11<12<13 17#10,%1,%2,%3
m—1 m—1
+ > [Cz‘oiliz + Cigiria (l)} I o
10<i1<ig 1#£10,11,%2
m—1 ~ m—1
+ 3 [bioin + b O] T D
10<11 ’I:?fio,il
m—1 m—1
+ Z [az’o + a;, (l)} H D;
20 17170
~ m—1
+P(1) 1] D
\ %




How 1t works...

- N h
. m—1 ] - l m—1 5 To solve the OPP reduction,
N(l) = Z [ ioivizis T igiriais ( )] 1l ™11 choosing special values for the

7:O<7:1 <’l,2<?,3 i#1077'1a7’277'3

loop momenta helps a lot

For example, choosing | such that

Do(IF) = Dy (IF) =

sets all the terms in this equation
to zero except the first line




How 1t works...

N( ™\

To solve the OPP reduction,
choosing special values for the
loop momenta helps a lot

D,

For example, choosing | such that

Do(IF) = Dy (1) =

sets all the terms in this equation
to zero except the first line




How 1t works...

N I
To solve the OPP reduction,

choosing special values for the
loop momenta helps a lot

D;

For example, choosing | such that
Do(IF) = D1(IF) =
= Dy(IF) = D3(IF) =0

sets all the terms in this equation
to zero except the first line

There are two (complex)
solutions to this equation due to
the quadratic nature of the

propagators

J\ J




How 1t works...

m—1 m—1
+ Z [62021%2 + ézo’iliQ (l)} H D;
10<11<1%9 ’L;é%o 11,12
m—1
—|_ Z |:b7,0'1,1 +b’LoZl ] H D
10<11 1#£10,11
m—1 m—1
+ 3 [ +a,0] I 2
10 ’I:;éio
~ m—1
+P(1) 1] D
N\ )

- Coefficient computed in a previous step
. Mattelaerolivieer  Monte-carlo Lectures: 2019 X



How 1t works...

-

o

N(I

J

C) Coefficient computed in a previous step
. Mattelaerolivieer  Monte-carlo Lectures: 2019 X

m—1 _ m—1
) [di0i1i2i3 + dioilizis (l)} H D
10<11<19<13 1#10,%1,12,13
m—1 m—1 [ \
t Z | [c’ioi”? + Cioirig (l)} | H D Now we choose | such that
10<11 <12 1#£10,11,12
m—1 ~ m—1 ) ) )
+ 3 [biois + b O] T D Do(1") = D1(I") = Do(1) =0
10<11 ’I:?fio,il
+mz_:1 [ L (l)} ”ﬁlD sets all the terms in this equation
Mo T otV o ' to zero except the first and
10 1#+10
_— second line
+20) I] D \_ Y




How 1t works...

m—1 _ m—1
N(l) Z [dioilizis + di0i1i2i3 (l)} H D
10<11<19<13 1#10,%1,12,13
m—1 m—1 /
T Z | [c’ioil’iz T Cioiria (l)} D Now we choose | such that
10<i1<ig 1#£10,11,%2

o

= (

~

Do(1") = D1 (I") = Dy(1") = 0

sets all the terms in this equation

to zero except the first and

J

C) Coefficient computed in a previous step

second line

o

J




How 1t works...

~

J

/
m—1 _ m—1
N(l) Z [dioilizis =+ di0i1i2i3 (l)} D
10<11<19<13 15#%0,%1,%2,3
[
Now we choose | such that
Do(1") = D1(1") = Do(1") = 0
sets all the terms in this equation
to zero except the first and
second line
\_
\_ J

C) Coefficient computed in a previous step




How 1t works...

o J

- Coefficient computed in a previous step
. Mattelaerolivieer  Monte-carlo Lectures: 2019 X




How 1t works...

/
4 m—1 _ m—1
N(l) — Z [d’ioil’iQis -+ di0i1i2i3 (l)] D
\’I:o<’i1<’l:2<’i3 15#%0,%1,%2,3 )
=1 T — 1 ™\
+ Z [Cioilig == Chinin (l)] H D; - ~
e e /I Now, choosing I such that
+ Z [bioil +Bioi1(l)} H D; DO(ZZ) — D]_ (Z’L) — O
10<11 ’1:751:0,7;1
m—1 m—1 sets all the terms in this equation
T Z [aio T “io(l)} 1;[ D; to zero except the first, second
0 1710 . .
e \_ and third line )
+P(1) 1] D
\_ Y

C) Coefficient computed in a previous step



How 1t works...

ay ﬁ
NIy > [dioiligig + Jioilizig(l)] I] »

'I:o<’l:1 <’I:2<?:3 ’L';é’l,o,’l,l,’l.z,’lg

=1 . <
-+ | Z | [Cz‘oiliz P Caobnds (l)] H D; / \
\Z;<_le<7/2 m—1 1#£10,11,%2 J NOW, ChOOSing | such that
+ 2 [bon +b0n @] 1 D Dy (1") = D1(1") =0
<"1 171%0,11

sets all the terms in this equation
to zero except the first, second

\_ and third line )

= (

o /
C) Coefficient computed in a previous step




How 1t works...

s

- /
- Coefficient computed in a previous step

Now, choosing | such that A
Di(1") =0
sets the last line to zero
\_ /




How 1t works...

4 m—1 _ m—1 ﬁ
N(l) = Z [di0i1i2i3 + di0i1i2i3 (l)} H D
\7:0<’I:1<7:2<?:3 i#iOai1>i27’i’3 y
/=1 T — 1 ™\
+ Z [Ci0i1i2 + Cigiyig (l)] H D;
(:O<’I:1<'l:2 7:#7:0/':177:2 )
m—1 i m—1 )
1Y biois + b @] T D
\i0<i1 170,11 Y,
m—1 m—1
+ Z [aio + &io(l)} H D;
i iio

= (

o /
C) Coefficient computed in a previous step

o

Now, choosing | such that
Di(I')=0

sets the last line to zero

J




How 1t works...

( Now, choosing arbitrary | )

N\ J
- Coefficient computed in a previous step




How It works...

( We have our Numerator! )

-

- Coefficient computed in a previous step
. Mattelaerolivieer  Monte-carlo Lectures: 2019 X




How It works...

4 N

® For each phase-space point we have to solve the system of
equations

® Due to the fact that the system reduces when picking special
values for the loop momentum, the system greatly reduces

® For a given phase-space point, we have to compute the
numerator function several times (~50 or so for a box loop)

® Trick can be used here (OpenLoop method)

. J




d dimensions

® |n the previous consideration | was very sloppy in considering
if we are working in 4 or d dimensions

® |n general, external momenta and polarization vectors are in
4 dimensions; only the loop momentum is in d dimensions

NS /

4 )

® To be more correct, we compute the integral




Implications

/

.

® The decomposition in terms of scalar
iIntegrals has to be done in d dimensions

® This is why the rational part R is needed

-




Rational terms

~

DoD1Ds -+ Dyyq
4 )
R=Ri+ R>




Rational terms

/ddl NG

DoD1Dg -+ Dpy—q

-

® T[hey are split iInto two contributions, generally

called
R=Ri+ R>

® Both have their origin in the UV part of the model,




Rational terms

/ddl - ]Y(l7l)_
DoD1Dgy -+ Dy

-

® T[hey are split iInto two contributions, generally

called
R = ‘—l— Rs

® Both have their origin in the UV part of the model,

® R|:originates from the propagator (calculate on the flight)

J




Rational terms

/ddl - ]Y(l7l)_
DoD1Dgy -+ Dy

-

o

® T[hey are split iInto two contributions, generally

called
RC

® Both have their origin in the UV part of the model,
® R|:originates from the propagator (calculate on the flight)

® R2:originates from the numerator (need in the model)

J




FeynRules

Renormalize the Lagrangian

model.mod
model.gen

FeynArts
Write the amplitudes

NLOCT.m
Compute the NLO vertices

C. Degrande



FeynRules

Renormalize the Lagrangian
A

model.mod
model.gen ‘model.nlo

FeynArts
Write the amplitudes

NLOCT.m
Compute the NLO vertices

C. Degrande



FeynRules

Renormalize the Lagrangian

model.mod i
model.gen ‘model.nlo‘

FeynArts
Write the amplitudes

NLOCT.m
Compute the NLO vertices

C. Degrande



Numerical Stability

[a—

<
[
1

10—2 n

Fraction of events B(A)

oo t1
103 =m=go—otfg
-O—gg—)t?gg

~—gge V. V,bb

107 10 108 10 10°° 1077 1073 1073 107! 10
e For 2 to 4 processes, ~7% of the Phase-space point have a precision worse than le-3

= Previous solution pass to quadruple precision (extremelly slow)



Stability

-~

Quadruple precision

® Very slow (100 times slower)
® |% unstable point means 50% of the time is used in those points

® Stability curve are crucial for comparing code efficiency

o




Stability

-

Quadruple precision

® Very slow (100 times slower)
® |% unstable point means 50% of the time is used in those points

® Stability curve are crucial for comparing code efficiency

o

Avoid Quadruple precision

® Use another method (TIR instead of OPP) to evaluate the loop reduces
the need of quadruple precision




IREGI

N\

= Slower than previous method but faster than quadruple precision

(. New Solution use IREGI: a TIR program

= Usually less uncertainty (and not for the same PS point)

~N

J
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Difficulties

S

(o 3 questions: N

Virtual amplitudes: how to compute the loops automatically
in a reasonable amount of time

How to deal with divergencies for phase-space integration

How to match these processes to a parton shower without
\ double counting

/




Dealing with divergencies

More details in S. Schuman lectures




- )
/Odw f(x) flx) = M g(x) Finite everywhere
o

J




Example

- ~

/dw f(x) f(x) = M g(x) Finite everywhere
0 X

N\ Y,

4 2
® Type of Divergencies of the real m +

S Y,




Example

4 )
1 g(x)

/dx f(x) flz) = ——= g(x) Finite everywhere
0 XL

\_ _/

4 2)
® Type of Divergencies of the real m + ..

NG /

4 | N

® |et’s introduce a regulator

1 1
. g(z) _ .. N
21_1{)1(1) Od:c e —21_1% Od:zj:v f(x)

for any non-integer non-zero value for € this integral is finite

® \We would like to factor out the explicit poles in € so that they can
_ be canceled explicitly against the virtual corrections y,




Phase-Space Slicing

® We introduce a small parameter 0« 1:
1 1

lim [ dxx®f(x)=1lim | dx 9(z)

e—0 O e—0 O x].—e

1 ) 1
lim dx ggm) = lim (/ dx gf:c) —I—/ dx gfx))
e—=0 Jq ri—¢€ e—0 0 xrt—¢& 5 xr+—¢




Phase-Space Slicing

® We introduce a small parameter 0« 1:

1 1
lim [ dxx®f(x)=1lim | dx gfg})
e—0 /o e—0 Jy xr+—¢

bog(x)

lim dx

o) 1
= lim (/ dx gfx) —I—/ dx gfx))
e—=0 Jq xrl—¢ e—0 0 xrt—¢ 5 xr+—¢




Phase-Space Slicing

® We introduce a small parameter 0« 1:
1 1

lim [ dxx®f(x)=1lim | dx gfa:)
e—0 /o e—0 Jy xr+—¢

1

) 1
lim dx ggm) — lim (/ dx gf:c) —I—/ dx gfx))
e—=0 Jq xrl—¢ e—0 0 xrt—¢ 5 xr+—¢

1
: T
= lim | — log(S) g(O) —I-/ dx&) Finite peace
5




Phase-Space Slicing

® We introduce a small parameter 0« 1:

1 1
lim [ dxx®f(x)=1lim | dx 9(z)

e—0 0 e—0 O x].—e

1 ) 1
lim dx Eaz) = lim (/ dx gf:c) —I—/ dx gfx))
e—=0 Jq xri— e—0 0 xrt—¢& 5 xr+—¢
o) 1
~ lim (/ dx gl(O) —I—/ dx gfm))
e—0 0 xr+—¢ 5 xr+—¢

= lim —g da:—

e—0 5
s—)O

Pole Large cancelatlon




Subtraction method

4 1 )
lim [ dex™°f(x) f(x) = 9(z)
e—0 0 €X
\ %
(o Add and subtract the same term )

lim 1d:c:c_€f(:c) = lim 1d:13x_€ 9(0) + f(x)— "=
e—0 0 o e—0 0 X X




Subtraction method

4 1 )
lim [ drxxz™“f(z) flx) = 9(z)
e—0 0 €T
\ J
("o Add and subtract the same term )
1
lim d:c:c ‘flx)=1lim [draz™° [9(0) + f(x)—g(o)]
e—0 0 e—0 0

— lim dx [g(O) + . ]




Subtraction method

4 , )
lim [ dex™°f(x) f(x) = 9(z)
e—0 0 €X
\ %
(o Add and subtract the same term )

1
!i_l’)l’(l) de:c “flx )-21_1’)1”(1) Od:cx_elg(o)—l—f(m)—g(o)]




Subtraction method

4 , I
lim [ dzx=f(x) f(z) = 42
e—0 0 €T
\_ J
(o Add and subtract the same term )
1 1
- Ceppn _<| 9(0) ~g(0)
!1_1’)1”(1) de:c flz) = 21_1;1’(1) dx x [a: + f(x) - ]




Subtraction method

4 , I
lim [ dzx=f(x) f(z) = 42
e—0 0 €T
\_ J
(o Add and subtract the same term )
1 1
- Ceppn _<| 9(0) ~g(0)
!1_1’)1”(1) de:c flz) = 21_1;1’(1) dx x [a: + f(x) - ]




Subtraction method

4 1 ~
lim | doz=¢f(x) f(a) = I
e—0 0 T
N y
(e Add and subtract the same term )
1 1
1
— lim [ da [g(o) 9(z) — 9(0)
= lim
\ e—0 j

(" ® \We have factored out the |/€ divergence and are left with a
finite integral




Subtraction method

4 , I
lim [ dex™°f(x) f(x) = 9(z)
e—0 0 €T
\ v
("o Add and subtract the same term )
1 1
!i_l’)% de:c_ef(x) :li_r% deac_e [LC]ECO)—I—f(x)—gEEO)]
1
— liH(l) dx [g(O) 9(x) g(O)]

(" ® \We have factored out the |/€ divergence and are left with a
finite integral

® According to the KLN theorem the divergence cancels against
\_ the virtual corrections

J




To Remember

® |n both cases the pole is extracted and we end up with a finite
remainder:

O togs + [z / . glx) — g(0)

X X

® Subtraction acgs like a plus distribution

® Slicing works only for small 6, and one has to prove the 0-
independence of cross section and distribution; subtraction is
exact

® |[n both methods there are cancelation between large numbers.

f for a given observablealjigb O(x) # O(0) or we choose a too small

bin size, instabilities will arise (we cannot ask for an infinite

resolution)

® Subtraction is more flexible: good for automation
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NLO with Counter-term

ONLO = /d4§[)nB + /d"‘@nv + /d4(1)n_|_172
® With the subtraction terms the expression becomes

ONLO :/d4q)n8

4 d Poles cancel from
—|—/d (I)n V—I-/d <I>1C d-dim integration

e—0

4 dimension

+ / d4(I)n_|_1 (R B C) Integrand is finite in

® Terms in brackets are finite and can be integrated
numerically in d=4 and independently one from another



Kinematics of counter events

Real emission Subtraction term

® |f i and j are on-shell in the event, for the counterevent the
combined particle i+ must be on shel
® ;+j can be put on shell only be reshuffling the momenta of the

other particles
® |t can happen that event and counterevent end up in different

histogram bins
® Use |IR-safe observables and don’t ask for infinite resolution!

® Still, these precautions do not eliminate the problem...




4 charged lepton

® The NLO results shows a typical peak-dip structure that
hampers fixed order calculations

bin [fb] at

T T
bin [fb] at|LHC 7 Tev -

1.00
0.50 [

0.10
0.05 |

0.01
1.1 - ---< scale unc.
1.0
0.9F — pdf unc. .
06F — e+e_e+e_l/e+e_y,+,u,l_
05F
04F .
—4 -2 0 2 4

n(1"17)




Event Generation?

(¢ Another consequence of the kinematic mismatch is that A
we cannot generate events at NLO

® n+1-body contribution and n-body contribution are not
bounded from above — unweighting not possible

® Further ambiguity on which kinematics to use for the

_ unweighted events




Event Generation?

Another consequence of the kinematic mismatch is that A
we cannot generate events at NLO

® n+1-body contribution and n-body contribution are not
bounded from above — unweighting not possible

® Further ambiguity on which kinematics to use for the
_ unweighted events

(o

J

Histogram on the flight

(e In practice, two set of momenta are generated during the MC)
integration
® A n-body set, for Born, virtuals and counterterms
® A n+l-body set, for the real emission

® The various terms are computed. Cuts are applied on the

corresponding momenta and histograms are filled with the
\_ Weight and kinematics of each term

J
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To Remember

® Virtual and real matrix element are not finite, but their sum is.
Subtraction methods can be used to extract divergences for
real-emission matrix elements and cancel explicitly the poles
from the virtuals




To Remember

® Virtual and real matrix element are not finite, but their sum is.
Subtraction methods can be used to extract divergences for
real-emission matrix elements and cancel explicitly the poles
from the virtuals

® Event and counterevents have different kinematics. Unweighting
is not possible, we need to fill plots on-the-fly with weighted
events




To Remember

® Virtual and real matrix element are not finite, but their sum is.
Subtraction methods can be used to extract divergences for
real-emission matrix elements and cancel explicitly the poles
from the virtuals

® Event and counterevents have different kinematics. Unweighting
is not possible, we need to fill plots on-the-fly with weighted
events

® For plots, only IR-safe observable with finite resolution must be
used!




aMC@NLO




Matching NLO

« GOAL: We want to allow to have PS on NLO sample




Matching NLO

« GOAL: We want to allow to have PS on NLO sample

("« At NLO one faces double-counting issues: )

Parton shower

>
Born+Virtual: >“/V\/V zjvw 2’W vee
E e
Real emission: z\/\/\/ :2\/w .




Matching NLO

« GOAL: We want to allow to have PS on NLO sample

("« At NLO one faces double-counting issues: )

Parton shower

>
Born+Virtual: >VVV\1 zjvw :2\’\/\
N e i
Real emission: szv 2/\/ ...

* And also part of the wvirtual contribution i1s double counted

through the definition of the Sudakov factor A Y




Double counting

-

® Since A = | - PA contains contributions from the virtual
corrections implicrtly

~

® Because at NLO the virtual corrections are already included via

explicit matrix elements, A is double counting with the virtual
corrections

® |n fact, because the shower is unitary, what we are double
counting In the real emission corrections Is exactly equal to
what we are double counting in the virtual corrections (but
with opposite sign)!

J




Attach Parton-Shower

dO

fa“N Lo = [B+ V] d®, +d®, 1R ]




Attach Parton-Shower

do «
[0 NLO = [B+ V] d®, +d®, 1R ]

dO

® What’s wrong!

® |et's expand this at first order in the strong coupling




Attach Parton-Shower

d « ”
[" NLOFES™ — B+ V] d®, [ (0) + d®, 1R I;;*;gl(())]

dO
) 7 \
® What’s wrong!
® |et's expand this at first order in the strong coupling y
4 )

® [et Focus on the parton shower part

® [irst order means zero or one emission




Attach Parton-Shower

d « ”
[" Ngg“’s = [B+ V] d®,, [ (O) + d®, 1R 11%1(0)]

® What'’s wrong! A

® |et's expand this at first order in the strong coupling

_/
4 )

® [et Focus on the parton shower part

® [irst order means zero or one emission

Inte = Ag (@, Qo) + Aqg (Q, Qo) dPy OZ;—(t)Pa—wc

T




Attach Parton-Shower

d « ”
[" Ngg“’s = [B+ V] d®,, [ (O) + d®, 1R 11%1(0)]

® What'’s wrong! A

® |et's expand this at first order in the strong coupling

_/
4 )

® [et Focus on the parton shower part

® [irst order means zero or one emission

Inte = Ag (@, Qo) + Aqg (Q, Qo) dPy OZ;—(t)Pa—wc

T

2T

Aa (QaQO) — €Xp [_ /d(I)l aS(t) Pa—)bc] ~ 1 /dq)l a;frt) Pa—>bc




Attach Parton-Shower

d « ”
[" Ngg“’s = [B+ V] d®,, [ (O) + d®, 1R I;\%(O)]

® What'’s wrong! A

® |et's expand this at first order in the strong coupling

_/
4 )

® [et Focus on the parton shower part

® [irst order means zero or one emission

as(t)

Ine = A (Q, Qo) + Ay (Q, Qo) dPy Wpa—)bc
Aa (Qa QO) — €Xp [_ /d(I)l a;;_t) Pa—)bc] ~ ] — /dq)l a;f_‘_t) Pa—)bc
st S
IMC’ ~ 1 - /dq)l Oéz—()Pa—ﬂ)c + d(I)l a2—(t)Pa—>bc
\ m m /




Attach Parton-Shower

do«NLOBPSY
[ SRS = B+ V] d<I>n-+d<I>n+1R-j

® What's wrong!

® |et's expand this at first order in the strong coupling

s(T s(T
IMczl—/dcblo‘ ODp a2 Wp
2T 27

do«NLO+PS”
dO

NLO breaking term (cancelling for inclusive observables)



Attach Parton-Shower

do«ypogpsm *
[ SRS = B+ V] dcbn-+d<1>n+172-j

® What's wrong!

® |et's expand this at first order in the strong coupling

S(t S(t |
T ~ 1—/d<1>10‘ Dp et do,2Wp
2T 27

4 ‘ )
do«NLO+PS”
dO

\_ NLO breaking term (cancelling for inclusive observables) /




MC@NLO procedure

[Frixione & Webber (2002)]

4 )

® [o remove the double counting, we can add and subtract the
same term to the m and m+1| body configurations

loop

|01 (R-MO)| 10




MC@NLO procedure

[Frixione & Webber (2002)]

4 N

® [o remove the double counting, we can add and subtract the
same term to the m and m+1| body configurations

dO'NCLZ,gWPS :[dq)m(B + \V4 —|—/d(I)1MC)] Ilg/[W(Lj)(O)
loop

|01 (R-MO)| 10

\_ J

(o Where the MC are defined to be the contribution of the )
parton shower to get from the m body Born final state to the
m+ 1| body real emission final state




MC@NLO procedure

[Frixione & Webber (2002)]

4 N

® [o remove the double counting, we can add and subtract the
same term to the m and m+1| body configurations

dO'NCLZ,gWPS :[dq)m(B + \V4 —|—/d(I)1MC)] Ilg/[W(Lj)(O)
loop

|01 (R-MO)| 10

\_ J

(o Where the MC are defined to be the contribution of the )
parton shower to get from the m body Born final state to the
m+ 1| body real emission final state

B (tMC ZMC g)
0P,

1 a1

MC =
tMC 2 O

P (ZMC) B

\_ /
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MC@NLO procedure

[Frixione & Webber (2002)]

4 N

® [o remove the double counting, we can add and subtract the
same term to the m and m+1| body configurations

dO'NCLZ,gWPS :[dq)m(B + \V4 —|—/d(I)1MC)] Ilg/[W(Lj)(O)
loop

|01 (R-MO)| 10

\_ J

(o Where the MC are defined to be the contribution of the )
parton shower to get from the m body Born final state to the
m+ 1| body real emission final state

B (tMC ZMC g)
0P,

1 a1

MC =
tMC 2 O

P (ZMC) /8]




Double counting avoided

4 )

loop

|01 (R-MO)| 1 (0

® [xpanded at NLO

. J




Double counting avoided

4 ; h
ONLOwWPS _ [d(bm(B 4 / V —I—/d(I>1MC)] ]ﬁdng (0)
dO loop
+ [dq)m_l_l(R_MC)] Ilg/["”'é+1) (0)
® Expanded at NLO
- MC MC
001~ [ e i
_ v




Double counting avoided

-

o

doONTOwWPS
dO

:[d@m(3+ / V o+ d@lMC)] im0)
loop

|01 (R-MO)| 1 (0

Expanded at NLO

. MC MC
1I1"(0)dO =1 — /d(I)l— Fdd— + ...

B B

~

-

do«nfcaNLO”

w

o

dO

.
N

= [B+V+/d<I>1MC] d®p, +dPpi1 [R — MC]

.




Double counting avoided

dO

4 do A
NLOwPS _ dq)m(B+/ V - d@lMC)] Iﬁ'g(O)
dO loop
+ [d(I)m+1(R—MC)] L (0)
® Expanded at NLO
- MO MC
Iie (0)dO = 1 - /dq’lf LR
L /
> I
do«prcanrLo” )

= [B+V+7Ld-d:,-ﬂ!4 d®,, + dPp41 [R — MC]
+ [ﬂLd!ITM‘G-i- d(I)1MC] add,




Double counting avoided

p N

loop

+ [dCI)m+1 (R—MC)] IlS/InZJ+1) (0)

® [Expanded at NLO

n MC MC
I (0)dO =1 — /dinf +ddy—— A+

% )
e N

dO“MgSNLO” - [B +V 4+ dem,Mg% d®;, + dPp i1 [R — M€

N




MC@NLO properties

® (Good features of including the MC counter terms

|. Double counting avoided: The rate expanded at NLO
coincides with the total NLO cross section




MC@NLO properties

® (Good features of including the MC counter terms

|. Double counting avoided: The rate expanded at NLO
coincides with the total NLO cross section

2. Smooth matching: MC@NLO coincides (in shape) with the
parton shower in the soft/collinear region, while it agrees

with the NLO in the hard region




O per bin [pb]

doNL,OwPS _
dO

Matching

d®,, (B + / %

loop

+ / dcleC)] i (0)

+ [d@mH(R—MC’)] Lye ™ (0)

108 ¢ - 7]
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100
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1072 3
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MadGr
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Matching

loop

+ [dq)m—l—l (R—MC)] Ilganéﬂ) (0)

10° %tfproduction at the LHC NLO —— KCOllinear \
: NLO+HW6 —— |
102 _ LO+HWE —— —/ (m)
| —~ | R~ MC = doycanLo ~ TN (0)dO
§-1OOS %
o ' 12
107! 3 _g

3 = = ‘Q—Tﬂ!
- Ratio over NLO+HW6 1 «

10 100 1000




Matching

doNLOW IC
ONLOwPS _ dq)m(B_|_/ V —|—/d(I)1MC) IIS/[C)(O)
dO loop
4 [d@m+1 (R—MC)] Il%ﬂ) (0)
103 éﬁproduction at the LHC NLO::VLVZ : fcollinear \

LO+HWE —— =

_ R~ MC = doMCaNLO ~ Ils/[ﬂé) (O)dO
z 10 ¢ \
5 - 2
o | Hard Region
107" 3
: MC ~0
1072 3 E
I (m) N (m—+1) N
11 ~ -
§ Ratio over NLO+HW6 o “QDCTJ—IE
01 “H ‘..110 - 160 - I1‘000 K : dO—MC@NLO ™~ d®m—|—1R

J




MC@NLO properties

[ )

® (Good features of including the MC counter terms

|. Double counting avoided: The rate expanded at NLO
coincides with the total NLO cross section

2. Smooth matchinggt MC@NLO coincides (in shape) with the
parton shower in the soft/collinear region, while it agrees
with the NLO in the hard region

3. Un-weighting: weights associated to different multiplicities
are separately finite. The MC term has the same infrared
behavior as the real emission (there is a subtlety for the soft
divergence)

o J




Unweighting

- )




Unweighting

d
”Mgg“@ = (B +V+ / d<I>1MC’) d®,, I (0) + (R — MC) d®,, (1 171 (0)

4 )

® Because MC counter-term
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4 )

® Because MC counter-term

® Has the same kinematic of the real (no re-shuffling)




Unweighting

d
”MESNLO = (B +V+ / d<I>1MC) d®,, I (0) + (R — MC) d®,, (1 171 (0)

4 )

® Because MC counter-term
® Has the same kinematic of the real (no re-shuffling)

® Has the same collinear singularities as the real/virtual




Unweighting

d
aMggNLo _ (B +V 4+ / d<I>1MC) AP, I%,(0) + (R — MC) d®, 1 I7(0)

4 )

® Because MC counter-term

® Has the same kinematic of the real (no re-shuffling)

® Has the same collinear singularities as the real/virtual

® Both term are finite over the phase-space




Unweighting

d
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® Because MC counter-term
® Has the same kinematic of the real (no re-shuffling)
® Has the same collinear singularities as the real/virtual
® Both term are finite over the phase-space

® But R-MC can be negative




Unweighting

d
”Mgﬁmo = (B +V+ / d<I>1MC’) d®,, I (0) + (R — MC) d®,, (1 171 (0)

4 )

® Because MC counter-term
® Has the same kinematic of the real (no re-shuffling)
® Has the same collinear singularities as the real/virtual
® Both term are finite over the phase-space
® But R-MC can be negative

® 50 we can unweight events




Unweighting

d
aM;;gNLo _ (B +V 4+ / d<I>1MC) AP, I%,(0) + (R — MC) d®, 1 I7(0)

4 )

® Because MC counter-term
® Has the same kinematic of the real (no re-shuffling)
® Has the same collinear singularities as the real/virtual
® Both term are finite over the phase-space
® But R-MC can be negative
® 50 we can unweight events

® But we have negative events

- /
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MC@NLO properties

(- )

® (ood features of including the MC counter terms

|. Double counting avoided: The rate expanded at NLO
coincides with the total NLO cross section

2. Smooth matching: MC@NLO coincides (in shape) with the
parton shower in the soft/collinear region, while it agrees
with the NLO in the hard region

3. Un-weighting: weights associated to different multiplicities
are separately finite. The MC term has the same infrared
behaviour as the real emission (there Is a subtlety for the
soft divergence)




MC@NLO properties

4 )

® (ood features of including the MC counter terms

|. Double counting avoided:

2. Smooth matching

3. :Un-weighting:

NG J
_ L )
® \Weak points / limitations
|. Soft limit can be problematic
2. Negative events
3. Need dedicated implementation of the counter-term
- J




To Remember (1/2)

4 N

*Not all observables
are NLO accurate in a
NLO computation

tt pt

- Loop computation

- We know a basis b
of loop (not 5
existing for 2- |
loop) n :

= Matrix to inverse | -

L ive uncertainties
1 -0.6 ] | | ]
O Instabllity : z z = =




To Remember (2/2)

4 N

- fNLO computation done with counter-events
= NOo event generation
= bin miss-match

- NLO+PS generation: event generation

= Events Physical only after the Parton-
Shower.

= The Events should be generated for a given
shower (in MC@NLO)

= Negative events




