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• Any one-loop integral can be decomposed in scalar integrals

• The task is to find these coefficients efficiently (analytically or 
numerically)

Integrand reduction
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Key Point
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• Available in  computer libraries (FF [v. Oldenborgh], QCDLoop [Ellis, 
Zanderighi], OneLOop [v. Hameren])
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• The a, b, c, d and R coefficients depend only on 
external parameters and momenta

Divergences
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➡The coefficients d, c, b and a are finite and do not contain poles in 1/є

➡The 1/є dependence is in the scalar integrals (and the UV renormalization)

➡Divergencies related to the Real
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• Any one-loop integral can be decomposed in scalar integrals

• The task is to find these coefficients efficiently (analytically or 
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Integrand reduction
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Key Point

Two methods

• Passarino-Veltman

• OPP
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• Any one-loop integral can be decomposed in scalar integrals

• The task is to find these coefficients efficiently (analytically or 
numerically)
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Key Point

Two methods

• Passarino-Veltman

• OPP
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• Passarino-Veltman reduction: 
 
 

• Reduce a general integral to “scalar integrals” by “completing 
the square” 
 

Standard Approach
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• Passarino-Veltman reduction: 
 
 

• Reduce a general integral to “scalar integrals” by “completing 
the square” 
 

• Let’s do an example: 
Suppose we want to calculate this triangle integral

Standard Approach

 116

Z
ddl

N(l)

D0D1D2 · · ·Dm�1
!

X

i

coe↵i

Z
ddl

1

D0D1 · · ·

p

q
p+ q

l

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27
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• The only independent four vectors are pμ and qμ . Therefore, 
the integral must be proportional to those. We can set-up a 
system of linear equations.
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In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
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This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.
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27

Main Idea
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• The only independent four vectors are pμ and qμ . Therefore, 
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This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.
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This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
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numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
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4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
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• The only independent four vectors are pμ and qμ . Therefore, 
the integral must be proportional to those. We can set-up a 
system of linear equations.
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In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .
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Here we give an example of the result a scalar integral regularized by dimensional regu-
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This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
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In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .
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This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
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27

Main Idea

Resolution  (dropping the mass)

• contracting with      and  2pμ 2qμ
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In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
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Main Idea

Resolution  (dropping the mass)

• contracting with      and  2pμ 2qμ

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .
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⎠
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⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =
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⎜
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⎠
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⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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∫

dnl

(2π)n
lµlν
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2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11
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⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜
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⎝
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⎟
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. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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Main Idea

Resolution  (dropping the mass)

• contracting with      and  2pμ 2qμ

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows
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. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

Main Idea

Resolution  (dropping the mass)

• contracting with      and  2pμ 2qμ

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)
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⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(
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= G−1

(
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)

(4.25)

G is the Gram matrix

G =

(
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)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(
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1
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2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
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(
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∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)
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(
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)
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⎝
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⎞
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⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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• The only independent four vectors are pμ and qμ . Therefore, 
the integral must be proportional to those. We can set-up a 
system of linear equations.
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

Main Idea

Resolution  (dropping the mass)

• contracting with      and  2pμ 2qμ

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

Passarino-Veltman
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Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

Resolution  (dropping the mass)

• express the integral as simpler integral

R1 =

Z
dnl

(2⇡)n
2l · p

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + q)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� p2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2

Passarino-Veltman
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Resolution  (dropping the mass)

• express the integral as simpler integral

R1 =

Z
dnl

(2⇡)n
2l · p

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + q)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� p2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2

R1 =

Z
dnl

(2⇡)n
2l · p

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + q)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� p2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2

Passarino-Veltman

Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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Resolution  (dropping the mass)

• express the integral as simpler integral

R1 =

Z
dnl

(2⇡)n
2l · p

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + q)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� p2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2

R1 =

Z
dnl

(2⇡)n
2l · p

l2(l + p)2(l + q)2
=

Z
dnl

(2⇡)n
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2

=

Z
dnl

(2⇡)n
1

l2(l + q)2
�

Z
dnl

(2⇡)n
1

(l + p)2(l + q)2
� p2

Z
dnl

(2⇡)n
1

l2(l + p)2(l + q)2

Scalar Integral: Know analytically

Passarino-Veltman

Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

Already computed

Passarino-Veltman
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Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

Already computed

Passarino-Veltman
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Gram Determinant: G

Resolution  (dropping the mass)

• contracting with 2*p and 2*q  

✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆✓
2pµ
2qµ

◆
(pµ qµ)

✓
C1

C2

◆
=

✓
2p · p 2p · q
2p · q 2q · q

◆✓
C1

C2

◆

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

Already computed

Final Step
• Inverting the Gram Determinant

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

• We have an expression in term of scalar integral

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =

⎛

⎜

⎜

⎝

. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .

⎞

⎟

⎟

⎠

, Ycollinear =

⎛

⎜

⎜

⎝

. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .

⎞

⎟

⎟

⎠

. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4− 2ϵ.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ϵ

s12s23

×
{

2

ϵ2

(

(−s12)
−ϵ + (−s23−)−ϵ

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ϵ) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ϵ. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

∫

dnl

(2π)n
lµlν

(l2 −m2
1)((l + p)2 −m2

2)((l + q)2 −m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)

⎛

⎜

⎜

⎝

C11

C22

C12

C00

⎞

⎟

⎟

⎠

(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2− l2− p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ∥ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ∥ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1− κδ.p
p2(1+κ2) κ+ κδ.p

p2(1+κ2)

κ+ κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

Passarino-Veltman
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• Any one-loop integral can be decomposed in scalar integrals

• The task is to find these coefficients efficiently (analytically or 
numerically)

Integrand reduction
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Key Point

Two methods
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• OPP



Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lectures: 2019

• Any one-loop integral can be decomposed in scalar integrals

• The task is to find these coefficients efficiently (analytically or 
numerically)

Integrand reduction

 X

Key Point

Two methods

• Passarino-Veltman

• OPP



Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lectures: 2019

OPP Reduction

 X

• The decomposition to scalar 
integrals presented before works 
at the level of the integrals

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)



Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lectures: 2019

OPP Reduction

 X

• The decomposition to scalar 
integrals presented before works 
at the level of the integrals

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

• If we would know a similar relation at  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OPP Reduction

 X

• The decomposition to scalar 
integrals presented before works 
at the level of the integrals

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

• If we would know a similar relation at  
the integrand level, we would be able  
to manipulate the integrands and 
extract the coefficients without doing 
the integrals

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di
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OPP Reduction

 X

• The decomposition to scalar 
integrals presented before works 
at the level of the integrals

M1-loop =
�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

• If we would know a similar relation at  
the integrand level, we would be able  
to manipulate the integrands and 
extract the coefficients without doing 
the integrals

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di
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• The functional form of the spurious terms is known (it depends on the 
rank of the integral and the number of propagators in the loop) [del 
Aguila, Pittau 2004]

• for example, a box coefficient from a rank 1 numerator is 
 
 
 
 
(remember that pi is the sum of the momentum that has entered the 
loop so far, so we always have p0 = 0)

• The integral is zero  
 
 

spurious terms
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How it works...
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To solve the OPP reduction, 
choosing special values for the 
loop momenta helps a lot

How it works...
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To solve the OPP reduction, 
choosing special values for the 
loop momenta helps a lot

For example, choosing l such that 
 
 
 
sets all the terms in this equation 
to zero except the first line

How it works...
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To solve the OPP reduction, 
choosing special values for the 
loop momenta helps a lot

For example, choosing l such that 
 
 
 
sets all the terms in this equation 
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To solve the OPP reduction, 
choosing special values for the 
loop momenta helps a lot

For example, choosing l such that 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to zero except the first line
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To solve the OPP reduction, 
choosing special values for the 
loop momenta helps a lot

For example, choosing l such that 
 
 
 
sets all the terms in this equation 
to zero except the first line

There are two (complex) 
solutions to this equation due to 
the quadratic nature of the 
propagators

How it works...
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How it works...
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Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lectures: 2019

Now we choose l such that

 
sets all the terms in this equation 
to zero except the first and 
second line

How it works...
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ai0 + ãi0(l)

⌅ m�1⇥

i ⇥=i0

Di

+P̃ (l)
m�1⇥

i

Di

D0(l
i) = D1(l

i) = D2(l
i) = 0

Coefficient computed in a previous step



Fabio MaltoniFabio MaltoniMattelaer Olivier Monte-Carlo Lectures: 2019

Now we choose l such that

 
sets all the terms in this equation 
to zero except the first and 
second line

How it works...
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Now we choose l such that

 
sets all the terms in this equation 
to zero except the first and 
second line

How it works...
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How it works...
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Now, choosing l such that 
 
 
sets all the terms in this equation 
to zero except the first, second 
and third line

How it works...
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Now, choosing l such that 
 
 
sets all the terms in this equation 
to zero except the first, second 
and third line

How it works...

 X

N(l) =
m�1�

i0<i1<i2<i3

⇤
di0i1i2i3 + d̃i0i1i2i3(l)

⌅ m�1⇥

i ⇥=i0,i1,i2,i3

Di

+
m�1�

i0<i1<i2

⇤
ci0i1i2 + c̃i0i1i2(l)

⌅ m�1⇥

i ⇥=i0,i1,i2

Di

+
m�1�

i0<i1

⇤
bi0i1 + b̃i0i1(l)

⌅ m�1⇥

i ⇥=i0,i1

Di

+
m�1�

i0

⇤
ai0 + ãi0(l)
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Now, choosing l such that 
 
 
sets  the last line to zero

How it works...
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Now, choosing l such that 
 
 
sets  the last line to zero

How it works...
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Now, choosing arbitrary l

How it works...
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We have our Numerator!

How it works...
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• For each phase-space point we have to solve the system of 
equations

• Due to the fact that the system reduces when picking special 
values for the loop momentum, the system greatly reduces

• For a given phase-space point, we have to compute the 
numerator function several times (~50 or so for a box loop)

• Trick can be used here (OpenLoop method)

How it works...

 X
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• In the previous consideration I was very sloppy in considering 
if we are working in 4 or d dimensions

• In general, external momenta and polarization vectors are in 
4 dimensions; only the loop momentum is in d dimensions 
 

• To be more correct, we compute the integral

d dimensions

 121

Z
ddl

N(l, l̃)

D̄0D̄1D̄2 · · · D̄m�1

D̄i = (l̄ + pi)
2 �m2

i = (l + pi)
2 �m2

i + l̃2 = Di + l̃2

l̄ = l + l̃

4 dim epsilon dimd dim

l̄ · pi = l · pi l̄ · l̄ = l · l + l̃ · l̃l · l̃ = 0
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• The decomposition in terms of scalar 
integrals has to be done in d dimensions 

• This is why the rational part R is needed

Implications

 122

k n

k 1

k 1

k 2

k 3

D 2
k 2k 1 k 3

D 0  

k 4

k 5

k 6

k 6

D 3

D m−1

l l+

D1

+l+ +

l+...+

Figure 1: An n-point one-loop diagram with m propagators in the loop. The dark blob represents
a tree structure.

The values of the integers Mi depend on the particular diagram considered (e.g. in fig. 1

we have M1 = 1, M2 = 3, M3 = 6), but they must always fulfill the following conditions:

1 ≤ Mi < Mi+1 , Mm = n =⇒ p0 = 0 , (3.5)

where the last equality of eq. (3.5) follows from eq. (3.2). The inverses of the loop propa-

gators in d and four dimensions we denote by D̄ and D respectively. Hence:

D̄i = (ℓ̄+ pi)
2 −m2

i = Di + ℓ̃2 ≡ (ℓ+ pi)
2 −m2

i + ℓ̃2 , 0 ≤ i ≤ m− 1 , (3.6)

which follows from eq. (3.3), and from the fact that the (−2ϵ)-dimensional parts of the

external four-vectors are equal to zero, since the ’t Hooft-Veltman scheme is adopted. Note

that mi is the mass of the particle flowing in the ith propagator, and therefore in general

p2i ≠ m2
i . As is known [14], the one-loop integral C can be expressed as a cut-constructible

part, i.e. a linear combination of scalar boxes, triangles, bubbles, and tadpoles, plus a (non

cut-constructible) remainder term R, called rational part:

C =
m−1∑

0≤i0<i1<i2<i3

d(i0i1i2i3)

∫
ddℓ̄

1

D̄i0D̄i1D̄i2D̄i3

+
m−1∑

0≤i0<i1<i2

c(i0i1i2)

∫
ddℓ̄

1

D̄i0D̄i1D̄i2

+
m−1∑

0≤i0<i1

b(i0i1)

∫
ddℓ̄

1

D̄i0D̄i1

+
m−1∑

i0=0

a(i0)

∫
ddℓ̄

1

D̄i0

+ R . (3.7)

The essence of the OPP method is that of computing C by determining (in a numerical

manner) the set of coefficients and the rational part

d(i0i1i2i3), c(i0i1i2), b(i0i1), a(i0), R, (3.8)

– 10 –
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Rational terms

 123

R = R1 +R2

Z
ddl

N(l, l̃)

D̄0D̄1D̄2 · · · D̄m�1
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• They are split into two contributions, generally 
called 
 

• Both have their origin in the UV part of the model,

• R1: originates from the propagator (calculate on the flight)

• R2: originates from the numerator (need in the model)

Rational terms

 123

R = R1 +R2

Z
ddl

N(l, l̃)

D̄0D̄1D̄2 · · · D̄m�1
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Numerical Stability

 125

Stability&of&CutTools&

ValenQn&Hirschi&

• For 2 to 4 processes, ~7% of the Phase-space point have a precision worse than 1e-3

➡ Previous solution pass to quadruple precision (extremelly slow)

1% of events have 
precision worse 
than 1 per mil
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Quadruple precision

• Very slow (100 times slower)

• 1% unstable point means 50% of the time is used in those points

• Stability curve are crucial for comparing code efficiency
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Stability

 126

Quadruple precision

• Very slow (100 times slower)

• 1% unstable point means 50% of the time is used in those points

• Stability curve are crucial for comparing code efficiency

Avoid Quadruple precision

• Use another method (TIR instead of OPP) to evaluate the loop reduces 
the need of quadruple precision
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IREGI

 127

Stability&

• New Solution use IREGI: a TIR program

➡ Slower than previous method but faster than quadruple precision

➡Usually less uncertainty (and not for the same PS point)

[H.-shao]
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• 3 questions:

• Virtual amplitudes: how to compute the loops automatically 
in a reasonable amount of time

• How to deal with divergencies for phase-space integration

• How to match these processes to a parton shower without 
double counting

Difficulties

 128

+ anything
= + O(αs2) + +



Dealing with divergencies 
More details in S. Schuman lectures
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Example

 130

� 1

0
dx f(x) f(x) =

g(x)
x

g(x) Finite everywhere
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• Type of Divergencies of the real

Example

 130

� 1

0
dx f(x) f(x) =

g(x)
x

g(x) Finite everywhere

2

gs

+ ..
.

• Let’s introduce a regulator 
 
 
 
for any non-integer non-zero value for     this integral is finite

• We would like to factor out the explicit poles in     so that they can 
be canceled explicitly against the virtual corrections

lim
�⇥0

� 1

0
dx

g(x)
x1+�

= lim
�⇥0

� 1

0
dx x��f(x)

�

�
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Phase-Space Slicing
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Phase-Space Slicing

 X

Pole 

Finite peace

Large cancelation
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• Add and subtract the same term

Subtraction method

 131

lim
�⇥0

� 1

0
dx

f(x)
x1+�

= lim
�⇥0

� 1

0
dx x��f(x) f(x) =

g(x)
x

lim
�⇥0

⇤ 1

0
dx x��f(x) = lim

�⇥0

⇤ 1

0
dx x��

�
g(0)
x

+ f(x)�g(0)
x

⇥
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• Add and subtract the same term

• We have factored out the 1/   divergence and are left with a 
finite integral

Subtraction method
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• Add and subtract the same term

• We have factored out the 1/   divergence and are left with a 
finite integral

• According to the KLN theorem the divergence cancels against 
the virtual corrections

Subtraction method

 131
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To Remember
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NLO with Counter-term

 X
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Kinematics of counter events

 132
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• The NLO results shows a typical peak-dip structure that 
hampers fixed order calculations

4 charged lepton

 133

Figure 3: As in fig. 1, for the inclusive η of the opposite-charge, Z-id matched lepton pairs (left
panel), and the inclusive ∆φ distance of the opposite-charge, non-Z-id matched lepton pairs (right
panel).

is quite small over the whole range in pT , but tends to grow larger towards larger pT . This

effect has the same origin as that observed in the right panel of fig. 1, but it is much more

moderate than there. This is due to the fact that in the present case the whole range in pT

is associated with complete NLO corrections. The PDF uncertainty is seen to be similar to

or slightly smaller than that due to scale variation; parton densities are well determined in

the x range probed here. Finally, there is no difference between the two leptonic channels

for this observable; as already mentioned above, this conclusion is independent of whether

one applies the Z-id cuts. The pT of the lepton pairs shown in the right panel of fig. 2

follows the same pattern as the one we have just discussed, but the differences between

the various predictions are larger in this case. In particular, aMC@LO is closer to NLO

than to LO, which is a consequence of the more important role played by extra radiation in

this case (as one expects, the present one being a correlation between two particles rather

than a single-inclusive observable). Again, the closeness of NLO and aMC@NLO results

shows the desired perturbative behaviour. The more significant impact of extra radiation

on this variable is reflected in the slightly larger scale dependence at large pT ’s w.r.t. what

happens for the transverse momentum of the individual leptons discussed before. The two

leptonic channels agree well, also when removing the Z-id cuts.

Figure 3 shows two observables constructed after applying the Z-id cuts, namely the

pseudorapidity of lepton pairs with opposite charge which are also Z-id matched (left

panel; this is then the pseudorapidity of would-be Z bosons), and the azimuthal distance

between leptons of opposite charge which are not Z-id matched (right panel; thus, these

are leptons emerging from different would-be Z bosons). As in the case of fig. 2, there are

two entries in each histogram for any given event. These two observables are dominated

by small transverse momenta, and therefore it is not suprising that, at both O(α0
S) and
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Event Generation?
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Event Generation?
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Histogram on the flight
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aMC@NLO
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Matching NLO

 137

• GOAL: We want to allow to have PS on NLO sample
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Parton shower
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...Born+Virtual:

Real emission:
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Matching NLO

 137

• And also part of the virtual contribution is double counted 
through the definition of the Sudakov factor Δ

• GOAL: We want to allow to have PS on NLO sample

• At NLO one faces double-counting issues:
Parton shower

...

...Born+Virtual:

Real emission:
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• Since Δ = 1 - P, Δ contains contributions from the virtual 
corrections implicitly

• Because at NLO the virtual corrections are already included via 
explicit matrix elements, Δ is double counting with the virtual 
corrections

• In fact, because the shower is unitary, what we are double 
counting in the real emission corrections is exactly equal to 
what we are double counting in the virtual corrections (but 
with opposite sign)!

Double counting

 X
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Attach Parton-Shower
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• What’s wrong?

• Let’s expand this at first order in the strong coupling

• Let Focus on the parton shower part

• First order means zero or one emission
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Attach Parton-Shower
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• What’s wrong?

• Let’s expand this at first order in the strong coupling

Expected result

NLO breaking term (cancelling for inclusive observables)
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Attach Parton-Shower

 139

• What’s wrong?

• Let’s expand this at first order in the strong coupling

Expected result

NLO breaking term (cancelling for inclusive observables)
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• To remove the double counting, we can add and subtract the 
same term to the m and m+1 body configurations 

MC@NLO procedure

 140

[Frixione & Webber (2002)]

d�NLOwPS

dO
=


d�m(B +

Z

loop

V +

Z
d�1MC)

�
I
(m)

MC
(O)

+


d�m+1(R�MC)

�
I
(m+1)

MC
(O)
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• To remove the double counting, we can add and subtract the 
same term to the m and m+1 body configurations 

• Where the MC are defined to be the contribution of the 
parton shower to get from the m body Born final state to the 
m+1 body real emission final state

MC@NLO procedure

 140

[Frixione & Webber (2002)]
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Marco Zaro, 19-05-2014 LHCPhenoNet

• Use suitable counterterms to avoid double counting the emission 
from shower and ME, keeping the correct rate at order αs:!
!
!
!

• MC depends on the PSMC’s Sudakov:!
!
!

• Available for Herwig6, Pythia6 (Q2-ordered), Herwig++, Pythia8!
• MC acts as local counterterm!
• Unweighted event generation possible!
• Some weights can be negative (unweighting up to sign)!
• Only affects statistics

8

Matching in !
MC@NLO

d�MC@NLO
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• Expanded at NLO

Double counting avoided

 141
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• Good features of including the MC counter terms

1. Double counting avoided: The rate expanded at NLO 
coincides with the total NLO cross section

MC@NLO properties
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• Good features of including the MC counter terms

1. Double counting avoided: The rate expanded at NLO 
coincides with the total NLO cross section

2. Smooth matching: MC@NLO coincides (in shape) with the 
parton shower in the soft/collinear region, while it agrees 
with the NLO in the hard region
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• Good features of including the MC counter terms

1. Double counting avoided: The rate expanded at NLO 
coincides with the total NLO cross section

2. Smooth matching: MC@NLO coincides (in shape) with the 
parton shower in the soft/collinear region, while it agrees 
with the NLO in the hard region

3. Un-weighting: weights associated to different multiplicities 
are separately finite. The MC term has the same infrared 
behavior as the real emission (there is a subtlety for the soft 
divergence)

MC@NLO properties
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Unweighting
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• Because MC counter-term

• Has the same kinematic of the real (no re-shuffling)

• Has the same collinear singularities as the real/virtual

• Both term are finite over the phase-space

• But R-MC can be negative

• So we can unweight events 

• But we have negative events
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• Good features of including the MC counter terms

1. Double counting avoided: The rate expanded at NLO 
coincides with the total NLO cross section

2. Smooth matching: MC@NLO coincides (in shape) with the 
parton shower in the soft/collinear region, while it agrees 
with the NLO in the hard region

3. Un-weighting: weights associated to different multiplicities 
are separately finite. The MC term has the same infrared 
behaviour as the real emission (there is a subtlety for the 
soft divergence)
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• Good features of including the MC counter terms

1. Double counting avoided: 

2. Smooth matching

3. : Un-weighting:

MC@NLO properties
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• Weak points / limitations

1. Soft limit can be problematic

2. Negative events

3. Need dedicated implementation of the counter-term
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To Remember (1/2)

•Not all observables 
are NLO accurate in a 
NLO computation

•Loop computation
➡ We know a basis 
of loop (not 
existing for 2-
loop)

➡ Matrix to inverse
Instability
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•  fNLO computation done with counter-events
➡ No event generation
➡ bin miss-match

•NLO+PS generation: event generation
➡ Events Physical only after the Parton-
Shower.

➡ The Events should be generated for a given 
shower (in MC@NLO)

➡ Negative events
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To Remember (2/2)


