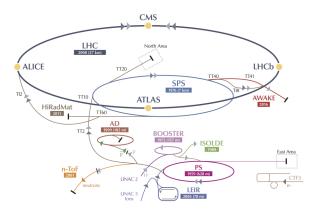
Cold beta-source tests of SCT modules for ATLAS HL upgrade

Ondřej Kovanda

Malá Skála, 13th April 2019

Ondřej Kovanda

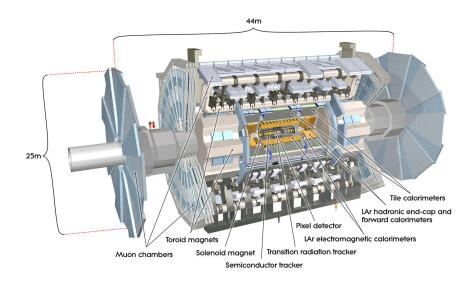
SCT Modules for ITk


Malá Skála, 13th April 2019 1 / 29

Outline

- Introduction: ATLAS Experiment
- The Need for Upgrade
- Semiconductor Particle Detectors
- ITk SCT Detector Modules
- Cold Beta Source Tests: Setup, DAQ, Analysis & Results

CERN and LHC


CERN's Accelerator Complex

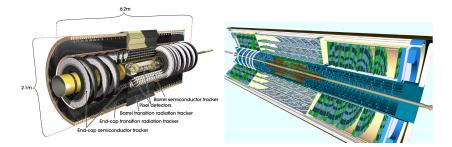
▶ p (proton) ▶ ion ▶ neutrons ▶ p
 (antiproton) ▶ electron →+→ proton/antiproton conversion

SCT Modules for ITk

ATLAS Experiment

ATLAS Today

- beam crossing @ 40 MHz
- $\bullet~\sim 10^{11}$ protons per bunch
- $10^{-34}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$ instantaneous luminosity
- \bullet collisions per bunch crossing (pile-up) ~ 25
- event recording @ 1 kHz
- $< 500\,{\rm fb^{-1}}$ integrated luminosity


The Bright Future

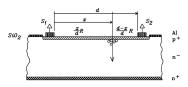
Instantaneous Luminosity will increase by a factor 5-7...

- Pile-up will increase from current to >140.
- $\sim 3000\,{\rm fb}^{-1}$ Integrated luminosity during HL phase

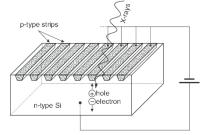
- ⇒ Readout electronics will have to be faster HL trigger record rate 10 kHz
- \implies An order-of-magnitude harsher radiation environment


ID vs. ITk

ID (left) & ITk (right)

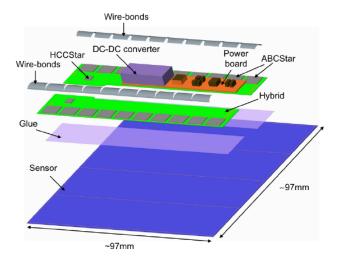

Semiconductor Detectors - Principles

• We need to get rid of free charge carriers - pure semiconductor \times p–n junction.

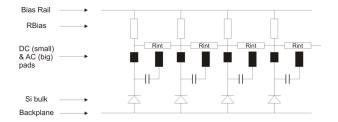


Tracking Semiconductor Detectors

Position sensitivity can be implemented in two ways...

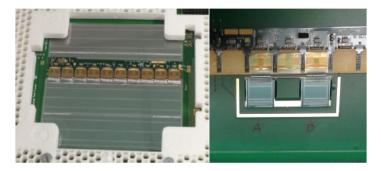


Resistive charge division Full amplitude readout



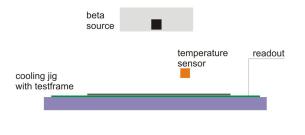
Fine division of one of the electrodes Binary readout possible

Module Design


Sensors

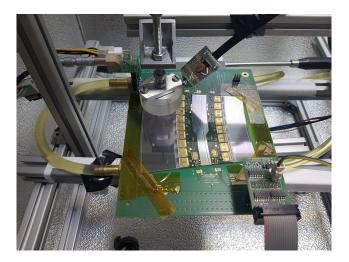
Characteristics	Non-irradiated sensor	Irradiated sensor
Leakage current	$\sim 10^{-9}{ m A}$	$\sim 10^{-7}$ – 10^{-4} A
Interstrip resistance	$\sim 10^{10}$ – $10^{11}\Omega/cm$	$\sim 10^9$ – $10^7\Omega/cm$ $$
Interstrip capacitance	$\sim 10^{-12}{ m F/cm}$	$\sim 10^{-12}{ m F/cm}$
Coupling capacitance	$\sim 10^{-11}{ m F/cm}$	$\sim 10^{-11}{ m F/cm}$
Bias resistance	$\sim 10^6\Omega$	$\sim 10^6\Omega$

Electronics


- ABC130 Atlas Binary Chip, 256 channels, pre-set threshold, buffer...
- HCC Hybrid Control Chip
- FEAST DC-DC convertor

Cold Testing – Motivation

- \bullet During operation, ITk will be cooled down to \sim -30 $^{\circ}\text{C}$
- Leakage current drops to the order of tens of nA
- ... do the modules work as expected?


Experimental Setup

scintilator
Summator
trigger

0		~ ·			
O	nd	rei	Ko	var	ida.

Experimental Setup

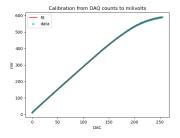
Cooling cycle

Water is bad, ice is even worse

- The sensor has to be kept over the dew point temperature at all times
- Control with jig thermometer, one temperature & RH sensor above the test frame and another near the wall of the freezer
- Dew point automatically calculated every few seconds

$$\gamma = \frac{RH}{100} + \frac{bT}{c+T}, \ T_{dp} = \frac{c\gamma}{b-\gamma}$$

where b = 18.678 and $c = 257.14 \,^{\circ}\text{C}$

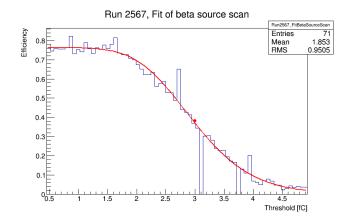

DAQ - Readout Calibration

Charge collected by strips in different units:

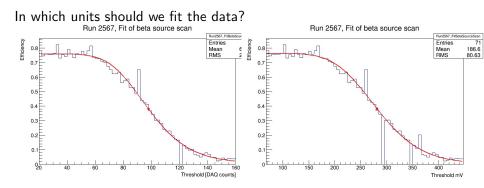
- DAC Data Acquisition Counts internal units of the DAq electronics expressing signal strength
- $\bullet~mV$ Calibration from DAC to mV dependent of FE electronics settings
- **fC** Actual ammount of charge deposited by particle, calibration from mV to fC dependent of ("almost") instantaneous conditions

DAQ - Readout Calibration

- Calibration from DAC to mV
- Strobe Delay synchronization of electronics
- Three Point Gain Calibration from mV to fC


Threshold Scan

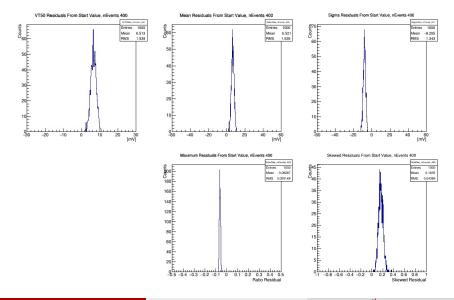
Threshold = value of collected charge in one channel below which the electronics reads out zero.


- The signal originating in detector has Gauss-convoluted Landau distribution.
- By raising the value of threshold, we make the detector accept only more energetic hits.
- Measured value is Efficiency hits registered by detector / hits registered by trigger
- Output from threshold scan is the value of threshold corresponding to 50 % of the maximal efficiency.

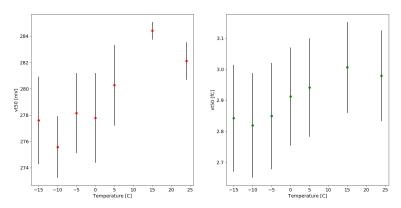
Threshold Scan

By scanning through threshold values, we obtain cummulative Gauss-Landau distribution, which can be fitted with S-curve (Skewed Complementary Error Function).

Threshold Scan

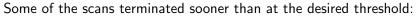


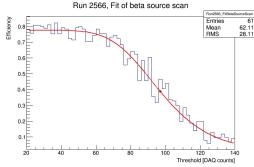
Uncertainity


Uncertainity of the 50 % efficiency threshold were determined by resampling:

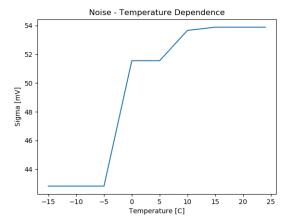
- Sub selection of the measured data is made
- ② Sub selection is fitted with S-curve and find 50 % efficiency point
- 8 Repeat 1500 times

Uncertainity




Results

50 % efficiency threshold, chip #6


Problems

Fitting was done with unphysical S-curve. We would like to fit with cumulative Gauss convoluted Landau to extract physical parameters.

Results (Preliminary)

Conclusion

- Ability of IPNP to perform low-temperature $\beta\text{-source}$ tests was demonstrated
- Tests of R0 module prototype were performed, showing slight decreasing trend of 50 % efficiency threshold with decreasing temperature
- Equivalence of fitting the data in various units was tested
- Safe cooling cycle was established

Thank you for your attention!

References

CERN. CERN document server, [online], available from https://cds.cern.ch **ATLAS Collaboration**. *Public results*, [online], available from https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ ATLAS Collaboration. Technical Design Report for the ATLAS ITk Strip Detector, [online], available from https: //cds.cern.ch/record/2239048/files/ATL-COM-UPGRADE-2016-040 The ATLAS Inner Detector Community. Inner Detector Technical Design Review, 1997, CERN/LHCC 97-16 C. Kittel. Introduction to Solid State Physics, 2005, John Wiley & Sons, 8th edition