Worldsheet construction of gauge instantons

 arXiv:1903.00487 \& work in progressJ. Vošmera ${ }^{1}$
in collaboration with
M. Schnabl, B. Stefański

${ }^{1}$ CEICO, Institute of Physics, AS CR, Prague

Malá Skála

April 12, 2019

Outline

1 Yang-Mills instantons

2 Superstrings

3 How they fit together

$D=4 S U(N)$ Yang-Mills

Gauge potential: $A_{\mu}=A_{\mu}^{a} T^{a}$, where $T^{a} \in \mathfrak{s u}(N)$
Covariant derivative: $\mathcal{D}=d+A$
Field strength: $F \equiv \mathcal{D} A$
Action:

$$
S[A]=-\frac{1}{2 g^{2}} \int_{\mathbb{R}^{4}} \operatorname{Tr} F \wedge * F
$$

Gauge transformations:

$$
A \longrightarrow U^{-1}(d+A) U, \quad U(x) \in S U(N)
$$

Instanton: a classical solution (vacuum) such that $S\left[A_{\mathrm{cl}}\right]<\infty$.
\Longrightarrow need pure gauge at ∞

$$
A_{\mathrm{cl}} \stackrel{r \rightarrow \infty}{\sim} U^{-1} d U, \quad \text { for some } U(x) \in S U(N)
$$

Instanton number

Claim 1: Instantons classified by their charge (number) k, where

$$
k \equiv-\frac{1}{16 \pi^{2}} \int_{\mathbb{R}^{4}} \operatorname{Tr} F \wedge F \in \pi_{3}(S U(N)) \cong \mathbb{Z}
$$

Proof:
Have

$$
\operatorname{Tr} F \wedge F=d K, \quad \text { where } \quad \frac{1}{2} K=\operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

and $d A \stackrel{r \rightarrow \infty}{\sim}-A \wedge A$, so $K^{r \rightarrow \infty} \sim^{-2} \operatorname{Tr} A \wedge A \wedge A$, so by Stokes

$$
k=\frac{1}{24 \pi^{2}} \int_{S_{\infty}^{3}} \operatorname{Tr} U^{-1} d U \wedge U^{-1} d U \wedge U^{-1} d U \in \mathbb{Z}
$$

\Longrightarrow Pontryagin index (winding number)

(Anti-)selfduality condition

Claim 2: All instantons satisfy

$$
* F=(\operatorname{sgn} k) F
$$

Proof:
Fix a topological sector $k \in \mathbb{Z}$ and use the Bogomolnyi trick:

$$
S=\underbrace{-\frac{1}{4 g^{2}} \int \operatorname{Tr}(F \mp * F) \wedge *(F \mp * F) \mp \frac{1}{2 g^{2}} \underbrace{\int \operatorname{Tr} F \wedge F}_{-16 k \pi^{2}} \geqslant \pm \frac{8 k \pi^{2}}{g^{2}}}_{\text {non-negative }}
$$

$\Longrightarrow S$ minimized iff $* F=(\operatorname{sgn} k) F$ with

$$
S\left[A_{\mathrm{cl}}\right]=\frac{8 \pi^{2}}{g^{2}}|k|
$$

Moduli spaces

Moduli (collective coords / zero modes):

$$
\text { fluctuations } A_{\mathrm{cl}} \rightarrow A_{\mathrm{cl}}+\delta A \text { such that } \delta S=0 \text { modulo gauge trafos }
$$

One obtains ($\mathcal{D}_{\mathrm{cl}} \equiv d+A_{\mathrm{cl}}$)

$$
\begin{equation*}
* \mathcal{D}_{\mathrm{cl}} \delta A=(\operatorname{sgn} k) \mathcal{D}_{\mathrm{cl}} \delta A, \quad * \mathcal{D}_{\mathrm{cl}} * \delta A=0 \tag{1}
\end{equation*}
$$

Denote by \mathfrak{M}_{k} the space of solutions of (1)
Claim 3:

$$
\operatorname{dim} \mathfrak{M}_{k}=4 k N
$$

Proof: Use Atiyah-Singer index theorem.
Define a metric

$$
\gamma\left(\delta_{1} A, \delta_{2} A\right) \equiv-2 \int \operatorname{Tr} \delta_{1} A \wedge * \delta_{2} A
$$

Claim 4 (ADHM): With respect to γ, the spaces \mathfrak{M}_{k} are hyper-Kähler manifolds with conical singularities.

Example: $k=1$
$N=2$: we have (in regular gauge)

$$
A_{\mu}\left(x ; x_{0}, \rho, g\right)=g a_{\mu}^{a}\left(x ; x_{0}, \rho\right) T^{a} g^{-1}
$$

where

$$
a_{\mu}^{a}\left(x ; x_{0}, \rho\right)=2 \eta^{a}{ }_{\mu \nu} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{2}+\rho^{2}},
$$

with $\eta^{a}{ }_{\mu \nu}$ the selfdual t'Hooft symbol

$$
8 \text { moduli for } k=1, N=2 \begin{cases}x_{0} \in \mathbb{R}^{4} & \text { instanton centre (4) } \\ \rho \in \mathbb{R}^{+} & \text {instanton size (1) } \\ g \in S U(2) & \text { global rotation (3) }\end{cases}
$$

General N :

$$
\begin{gathered}
A_{\mu}^{S U(N)}=g\left(\begin{array}{cc}
0 & 0 \\
0 & a_{\mu}^{S U(2)}
\end{array}\right) g^{-1}, \quad g \in \frac{S U(N)}{S U(N-2) \times U(1)} \\
\underbrace{N^{2}-1}_{S U(N)}-[\underbrace{(N-2)^{2}-1}_{S U(N-2)}+\underbrace{1}_{U(1)}]+\underbrace{5}_{a_{\mu}^{S U(2)} \text { moduli }}=\underline{4 N \text { moduli }}
\end{gathered}
$$

Supersymmetry and non-commutativity

$\underline{\mathcal{N}}=4$ super Yang-Mills:

$$
\begin{array}{rlrl}
& & \mu & =0, \ldots, 3 \\
\text { field content: } & A_{\mu}^{a}, \phi^{i}, \lambda^{a}, \bar{\lambda}^{a} \quad i & =1, \ldots, 6 \\
& a & =1, \ldots, N^{2}-1
\end{array}
$$

$$
\text { lagrangian: } \quad \mathcal{L}_{\mathrm{SYM}}=\mathcal{L}_{\text {kin }}+\frac{1}{g^{2}} \operatorname{Tr}\left\{-\frac{1}{2}[\phi, \phi]^{2}-i \bar{\Sigma} \lambda[\phi, \lambda]-i \Sigma \bar{\lambda}[\phi, \bar{\lambda}]\right\}
$$

\rightarrow instantons are $1 / 2$-BPS states of the extended $\mathcal{N}=4$ superalgebra
$\rightarrow 2 k N$ fermionic zero modes \Longrightarrow supermoduli space with $\operatorname{dim}=6 k N$
Non-commutative $\mathbb{R}^{4}: \quad\left[x^{\mu}, x^{\nu}\right]=i \theta^{\mu \nu}$
\Longrightarrow replace all products by the Moyal product:

$$
\left.f(x) g(x) \longrightarrow f(x) \star g(x) \equiv e^{\frac{i}{2} \theta^{\mu \nu} \frac{\partial}{\partial \xi^{\mu}} \frac{\partial}{\partial \zeta^{\nu}}} f(x+\xi) g(x+\zeta)\right|_{\xi=\zeta=0}
$$

\rightarrow conical singularities in \mathfrak{M}_{k} resolved
\rightarrow non-trivial instantons for $k=1$

Outline

1 Yang-Mills instantons

2 Superstrings

3 How they fit together

Type II superstrings: action

Type II RNS superstring propagating in $D \operatorname{dims}(\mu, \nu, \ldots=0, \ldots, D-1)$ with (const.) background metric $g_{\mu \nu}$ (with fixed reparametrization gauge symm.):

$$
S_{\mathrm{gf}}=S_{\mathrm{m}}+S_{\mathrm{gh}}
$$

where

$$
\begin{aligned}
& S_{\mathrm{m}}=\frac{1}{2 \pi \alpha^{\prime}} \int_{\Sigma} d^{2} z g_{\mu \nu}\left(\partial X^{\mu} \bar{\partial} X^{\nu}+\psi^{\mu} \bar{\partial} \psi^{\nu}+\bar{\psi}^{\mu} \partial \bar{\psi}^{\nu}\right) \\
& S_{\mathrm{gh}}=\frac{1}{2 \pi} \int_{\Sigma} d^{2} z(b \bar{\partial} c+\bar{b} \partial \bar{c}+\beta \bar{\partial} \gamma+\bar{\beta} \partial \bar{\gamma})
\end{aligned}
$$

for a Riemann surface Σ (worldsheet) and
$X^{\mu} \quad \ldots$ Grassmann-even target coordinates
$\psi^{\mu} \quad$... Grassmann-odd target coordinates
$b, c \quad \ldots$ reparametrization ghosts
$\beta, \gamma \quad \ldots \quad$ reparametrization superghosts

Type II superstrings: symmetries

$$
\underline{\mathcal{N}}=(1,1) \text { (local) superconformal symmetry: }
$$

$$
\begin{aligned}
\delta_{\eta, \bar{\eta}} X^{\mu}(z, \bar{z}) & =-\eta(z) \psi^{\mu}(z)-\bar{\eta}(\bar{z}) \bar{\psi}^{\mu}(\bar{z}) \\
\delta_{\eta, \bar{\eta}} \psi^{\mu}(z) & =\eta(z) \partial X^{\mu}(z) \\
\delta_{\eta, \bar{\eta}} \bar{\psi}^{\mu}(\bar{z}) & =\bar{\eta}(\bar{z}) \bar{\partial} X^{\mu}(\bar{z})
\end{aligned}
$$

Generators:

$$
\begin{array}{ll}
G(z)=-\frac{1}{2} g_{\mu \nu} \psi^{\mu} \partial X^{\nu} & \bar{G}(\bar{z})=-\frac{1}{2} g_{\mu \nu} \bar{\psi}^{\mu} \bar{\partial} X^{\nu} \\
T(z)=-\frac{1}{2} g_{\mu \nu}\left(\partial X^{\mu} \partial X^{\nu}+\psi^{\mu} \partial \psi^{\nu}\right) & \bar{T}(\bar{z})=-\frac{1}{2} g_{\mu \nu}\left(\bar{\partial} X^{\mu} \bar{\partial} X^{\nu}+\bar{\psi}^{\mu} \overline{\partial \psi}^{\nu}\right)
\end{array}
$$

$$
\text { with OPE } G(z) G(0) \sim D z^{-3}+2 T(0) z^{-1}
$$

Superconformal anomaly:

$$
\begin{gathered}
c=\underbrace{D}_{=c_{\mathrm{m}, X}}+\underbrace{\frac{1}{2} D}_{=c_{\mathrm{m}, \psi}}+\underbrace{-26}_{=c_{\mathrm{gh}, b c}}+\underbrace{11}_{=c_{\mathrm{gh}, \beta \gamma}}=\frac{3}{2} D-15 \\
c=0 \Longrightarrow D=10
\end{gathered}
$$

Closed superstring: boundary conditions

Σ with punctures (in and out states) and holes (loops)

Figure: tree-level closed 4-string amp

Figure: 1-loop closed 4-string amp

Going around non-contractible cycles: worldsheet bosons: $\quad X^{\mu}\left(e^{2 i \pi} z, \bar{z}\right)=X^{\mu}\left(z, e^{2 i \pi} \bar{z}\right)=X^{\mu}(z, \bar{z})$ worldsheet fermions: $\quad \psi^{\mu}\left(e^{2 i \pi} z\right)= \begin{cases}+\psi^{\mu}(z) & \text { Ramond } \\ -\psi^{\mu}(z) & \text { Neveu-Schwarz }\end{cases}$

$$
\bar{\psi}^{\mu}\left(e^{-2 i \pi} \bar{z}\right)= \begin{cases}+\bar{\psi}^{\mu}(\bar{z}) & \mathrm{R} \\ -\bar{\psi}^{\mu}(\bar{z}) & \mathrm{NS}\end{cases}
$$

Closed superstring: low-energy physics

Consistency on higher-genus $\Sigma \Longrightarrow$ GSO projection
Massless spectrum:

$$
\begin{array}{lll}
\text { Type IIA: } & g, B_{(2)}, \phi, & C_{(1)}, C_{(3)} \\
\text { Type IIB: } & \underbrace{g, B_{(2)}, \phi}_{\text {NSNS sector }}, & \underbrace{C_{(0)}, C_{(2)}, C_{(4)}}_{\text {RR sector }}
\end{array}
$$

Low-energy effective action:

$$
\mathcal{N}=(1,1) / \mathcal{N}=(2,0) \text { type IIA / IIB supergravity in } D=10
$$

Classical solutions: 1/2-BPS (black) p-branes
$\rightarrow p$ even / odd in IIA / IIB
\rightarrow sources for g and $C_{(p+1)}$
$\rightarrow 1 / 2$-BPS multiplets of IIA/IIB $D=10$ super-Poincarè

Open superstring: boundary conditions

$\underline{\Sigma}$ with boundaries: G, T conserved across $\partial \Sigma \Longrightarrow$ gluing conditions

$$
\begin{aligned}
\left.G(z)\right|_{\partial \Sigma} & =\left.\bar{G}(\bar{z})\right|_{\partial \Sigma} \\
\left.T(z)\right|_{\partial \Sigma} & =\left.\bar{T}(\bar{z})\right|_{\partial \Sigma}
\end{aligned}
$$

Solutions $\equiv \underline{\text { D-branes }}$ (\# solutions $=\#$ irreps of the $c_{\mathrm{m}}=15 \mathcal{N}=(1,1) \mathrm{SCA}$) In particular have $\underline{\mathrm{D} p \text {-branes: }}$

$$
\begin{aligned}
\left.\partial X^{\mu}(z)\right|_{\partial \Sigma} & = \pm\left.\bar{\partial} X^{\nu}(\bar{z})\right|_{\partial \Sigma} \\
\left.\psi^{\mu}(z)\right|_{\partial \Sigma} & = \pm\left.\bar{\psi}^{\mu}(\bar{z})\right|_{\partial \Sigma}
\end{aligned}
$$

Open-closed duality:

D-branes are sources for g and $C_{(p)}$

Example: D3 branes in type IIB

Stack of N D3 branes

Massless spectrum:

$$
\underbrace{A_{\mu}^{a}, \phi^{i}}_{\text {NS sector }}, \underbrace{\lambda^{a}, \bar{\lambda}^{a}}_{\text {R sector }} \quad \begin{aligned}
i & =1, \ldots, 6 \\
a & =1, \ldots, N^{2}-1
\end{aligned}
$$

Low-energy effective action:

$$
\mathcal{N}=4 S U(N) \text { super Yang-Mills in } D=4
$$

Non-zero NSNS B-field \Longrightarrow non-commutativity with

$$
\theta^{\mu \nu}=\left(\frac{1}{g+B}\right)_{\mathrm{A}}^{\mu \nu}
$$

Outline

1 Yang-Mills instantons

2 Superstrings

3 How they fit together

Instantons on D3 branes

N D3 branes with k instanton gauge field configuration F

$$
S_{\mathrm{LEEA}} \supset S_{\mathrm{WZ}}=\int C_{(0)} \wedge F \wedge F
$$

$\Longrightarrow \underline{N}$ D3/kD(-1) bound state
SUSY counting:
$\left.\begin{array}{c}F \text { is } 1 / 2 \text {-BPS w.r.t. } D=4 \text { SYM } \\ \text { D3 is } 1 / 2-\text { BPS w.r.t. } D=10 \text { IIB SUGRA }\end{array}\right\} \Longrightarrow \begin{gathered}\text { D3/D(}-1 \text {) must be } 1 / 4 \text {-BPS } \\ \text { w.r.t. } D=10 \text { IIB SUGRA }\end{gathered}$
Indeed, $\exists 1 / 4$-BPS multiplets of $D=10 \mathcal{N}=(2,0)$ IIB super-Poincarè

$$
\left\{Q_{\alpha}, Q_{\beta}\right\} \supset\left(C \Gamma^{11}\right)_{\alpha \beta} Z+\frac{1}{4!}\left(C \Gamma_{\mu \nu \rho \sigma} \Gamma^{11}\right)_{\alpha \beta} Z^{\mu \nu \rho \sigma}
$$

with $Z=k, Z^{0 \mu \nu \lambda}=\varepsilon^{\mu \nu \lambda} N$ and mass
$\mathcal{M}_{\mathrm{D} 3 / \mathrm{D}(-1)}^{2}=k^{2} \mathcal{M}_{\mathrm{D}(-1)}^{2}+N^{2} \mathcal{M}_{\mathrm{D} 3}^{2}+2|k N|+2 k N \operatorname{Pf} B \leqslant\left(k \mathcal{M}_{\mathrm{D}(-1)}+N \mathcal{M}_{\mathrm{D} 3}\right)^{2}$

Q: what are the $\mathrm{D} 3 / \mathrm{D}(-1)$ worldsheet boundary conditions?

Gepner-like construction

1. replace $\mathbb{R}^{4} \rightarrow T^{4} \cong T^{2} \times T^{2}$ with T^{2} the $S U(3)$ torus with $R=\sqrt{\alpha^{\prime}}$
2. turn on $B_{\mu \nu}$ background s.t. $\int_{T^{2}} B=+\frac{1}{2}$

$$
G_{T^{4}}(z)=\sum_{a=1}^{6}\left(G_{a}^{+}(z)+G_{a}^{-}(z)\right), \quad T_{T^{4}}(z)=\sum_{a=1}^{6} T_{a}(z)
$$

where $\mathcal{W}_{a}=\left\{G_{a}^{ \pm}, T_{a}, J_{a}\right\}$ generate $\mathcal{N}=2$ SCA with $c=1$ and

$$
T_{a}(z) T_{b}(0) \sim T_{a}(z) G_{b}^{ \pm}(0) \sim \ldots \sim 0 \quad \text { for } a \neq b
$$

$$
\text { finite } \# \text { irreps of } \mathcal{W}_{a} \Longrightarrow \text { finite } \# \text { irreps of } \mathcal{W}_{T^{4}}=\bigoplus_{a=1}^{6} \mathcal{W}_{a}!
$$

GCs on $\mathcal{W}_{T^{4}}$ consistent with the total $\mathcal{N}=(1,1) \operatorname{SCA}\left(\pi \in S_{6}, \omega_{a}= \pm\right)$

$$
\begin{aligned}
\left.G_{a}^{ \pm}(z)\right|_{\partial \Sigma} & =\left.\bar{G}_{\pi(a)}^{\mp \omega}(\bar{z})\right|_{\partial \Sigma} \\
\left.T_{a}(z)\right|_{\partial \Sigma} & =\left.\bar{T}_{\pi(a)}(\bar{z})\right|_{\partial \Sigma} \\
\left.J_{a}(z)\right|_{\partial \Sigma} & =\left.\omega_{a} \bar{J}_{\pi(a)}(\bar{z})\right|_{\partial \Sigma}
\end{aligned}
$$

Results

We classified D-branes w.r.t. to all $6!\times 2^{6}=46080$ GCs imposed on $\mathcal{W}_{T^{4}}$

Interesting solutions:
$\rightarrow 1 / 4$-BPS objects with $Z=k, Z^{0123}=N, 4 k N$ massless string modes and mass $\mathcal{M}_{\mathrm{D} 3 / \mathrm{D}(-1)} \Longrightarrow$ instanton boundary conditions !
\rightarrow non-BPS objects with no tachyons \Longrightarrow new stable D-branes !

Thank you!

