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More scales – why people care (1)

Fine tuning needed iff 
m

X
 and m

Δ
 are independent input parameters.

Example: SU(5) Grand Unified Theory

Everything was 
TREE LEVEL!

Explain macroscopic phenomena 
in terms of microscopic laws

Hierarchy problem = naturalness problem

Based on “Bayessian feelings”!

“Doublet – triplet splitting”
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More scales – why people care (2)
Example 2: Loop corrections in simple models

Common wisdom: scalars are more sensitive 
on higher-energy scales than fermions.

If , fine-tuning of large negative                        .  

→ Hierarchy problem of the Higgs mass

This can be solved by SUSY, unlike Example 1.
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FALSEFALSE
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Standard Model

Tree level:

Single dimensionful parameter in the Lagrangian!

Quantum (loop) level: only more complicated prefactors

 Vaccum Expectation Value of the Higgs field = “the VEV” 

Higgs potential:
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Effective potential - crash-course

Analogue to scalar potential (e.g. Higgs) 

but with quantum loops incorporated.

Vaccuum Expectation Value 
of the scalar field 

is determined by 
minimum condition.

Mass of the 
corresponding particle 
given by curvature in 
the minimum
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What if V
eff

 = V
eff

(ф2)

Symmetric phase Broken phase

Def

Extremum condition

Scalar mass

Higgs boson mass always proportional to electroweak VEV!

Even for BSM people m
H
 = 125 GeV should have been no surprise!

Examples:    

- SM      
- SM with UV-cuttof    
- SM + heavy neutrino
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Hierarchy problem is not

 a problem of the SM alone
 as it is a single scale theory

 caused solely by loop corrections
 tree-level  fine-tuning issues are also common

 resolved fully in SUSY GUTs,
 tree level fine tuning still there

 a problem of smallness of m
H
= 125 GeV 

but rather of the whole electroweak scale

 a problem at all for 
“totally unBayessed” people.



  

LUNCH !!!
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