NOvA Results with Neutrino and Antineutrino Data, Recent Status and Prospects

Výjezdní seminář ÚČJF, MFF UK Malá skála, Czech Republic

Tomas Nosek

Charles University, Institute of Particle and Nuclear Physics

April 12, 2019

Neutrino oscillations

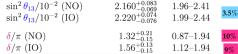
- lacktriangle Source producing neutrinos of certain flavor e.g. u_{μ}
- Detector (at certain distance) observes reduction in the flux of neutrinos of the produced flavor
 - \Rightarrow Neutrino disappearance: $\nu_{\mu} \longrightarrow \nu_{\mu}$
- ▶ Detector observes increase in the flux of neutrinos of different flavors from the one produced
 - \Rightarrow Neutrino appearance: $\nu_{\mu} \longrightarrow \nu_{e}$
- **Each** flavor state ν_{α} is a superposition of mass states ν_{i} (ν mixing)
- ► The (dis)appearance of ν has an oscillatory pattern as a function of distance/energy \Rightarrow **neutrino oscillations**

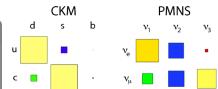
Neutrino oscillations and neutrino mixing

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{\text{PMNS}} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$= R(\theta_{23}) \cdot R(\theta_{13}, \delta_{\mathrm{CP}}) \cdot R(\theta_{12}) \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- Similar to CKM mixing, still very different ($U_{\rm PMNS}$, small ν masses)
- ν mixing up to 9 parameters, ν oscillations 6 parameters:


$$\theta_{12}, \theta_{13}, \theta_{23}, \delta_{\mathrm{CP}}, \Delta m_{21}^2, \Delta m_{31}^2$$


$\boldsymbol{\nu}$ oscillations open questions

Mass hierarchy (ordering)? Is $\theta_{23} = 45^{\circ}$ or >, <? Is there a CPV in lepton sector? NH = NO = normal hierarchy (ordering)

IH = IO = inverted hierarchy (ordering) Phys.Lett.B 782(2018), pp.633-640

parameter	best fit $\pm 1\sigma$	3σ range	
$\Delta m_{21}^2 \left[10^{-5} \text{eV}^2 \right]$	$7.55^{+0.20}_{-0.16}$	7.05-8.14	2.4
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (NO)}$ $ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (IO)}$	$2.50 \pm 0.03 \\ 2.42^{+0.03}_{-0.04}$	$2.41 - 2.60 \\ 2.31 - 2.51$	1.3
$\sin^2 \frac{\theta_{12}}{10^{-1}}$	$3.20^{+0.20}_{-0.16}$	2.73 – 3.79	5.5
$\sin^2 \theta_{23} / 10^{-1} \text{ (NO)}$	$5.47^{+0.20}_{-0.30}$	4.45 - 5.99	4.7
$\sin^2 \theta_{23} / 10^{-1} \text{ (IO)}$	$5.51^{+0.18}_{-0.30}$	4.53 – 5.98	4.4

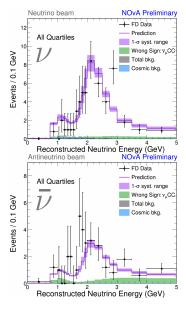
· · $v_{ au}$

2/36

The NOvA experiment ► NOvA is a long-baseline neutrino oscillation experiment NuMI ν_{μ} 700 kW beam, $\nu/\bar{\nu}$ modes ► Two functionally identical detectors, finely segmented calorimetric liquid scintillators, 14.6 mrad off-axis, 810 km apart Physics interests: • ν_{μ} disappearance: $\sin^2 2\theta_{23}$, $|\Delta m_{32}^2|$ $\nu_{\rm e}$ appearance: $\sin^2\theta_{23}$, Δm_{32}^2 , $\delta_{\rm CP}$ NC: 3ν model tests, sterile ν Xsecs physics ► Supernovae, multi- μ , monopoles, ν magnetic moments, LDM...

2018 analysis

Basic features of oscillation analysis

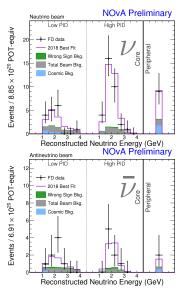

- ightharpoonup Classification of ν interactions with convolutional neural networks (CNN)
- ► Another CNN to categorize EM or hadronic nature of final state activity
- ▶ Data-driven predictions (Near/Far detector technique)
- \blacktriangleright Beam timing (10 μ s spill in 12 μ s window) + BDT to reduce cosmic bkg
- ► Fiducial+containment, beam alignment etc. selection criteria

2018 analysis

- ► First antineutrino data
 - **neutrino:** 8.85×10^{20} POT of 14 kton equivalent
 - **antineutrino:** 6.91×10^{20} POT (to Apr 2018)
- ▶ 4 channels to enter combined fit: $\nu_{\mu} \rightarrow \nu_{\mu}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}, \nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
- ► NOvA neutrino interaction tuning based on NOvA ND data (consistent with MINERvA tune)
- ▶ Beam power over 700 kW ($> 18 \times 10^{18}$ protons delivered/week)
- ► Reoptimization of selection algorithms

$u_{\mu} + \bar{\nu}_{\mu}$ disappearance analysis

Far detector data


- Selection efficiency 31.2% (33.9%) and purity 98.6% (98.8%) for $\nu_{\mu}(\bar{\nu}_{\mu})$ CC
- ► Energy resolution 9.1% (8.1%) for ν_{μ} ($\bar{\nu}_{\mu}$)
- Cosmic background rate is estimated from the timing sidebands of NuMI beam triggers and cosmic trigger data

Observed $113~ u_{\mu}$ CC events				
Exp. $730^{+38}_{-49}({\rm syst}) \pm 27({\rm stat})$ w/o osc.				
Total bkg. 11.0 events				
$\bar{\nu}_{\mu}$	NC	other beam bkg.	cosmic	
7.24	1.19	0.51	2.07	

Observed 65 $ar{ u}_{\mu}$ CC events				
Exp. $266^{+12}_{-14}(\text{syst}) \pm 16(\text{stat})$ w/o osc.				
Total bkg. 13.7 events				
$\overline{\nu_{\mu}}$	NC	other beam bkg.	cosmic	
12.58	0.39	0.23	0.46	

$u_e + \bar{\nu}_e$ appearance analysis

Far detector data

- ▶ ND ν_e data used to predict FD ν_e bkg
- ► Selection efficiency 62% (67%) and purity 57-78% (55-77%) for $\nu_e(\bar{\nu}_e)$ CC
- ▶ Energy resolution 10.7% (8.8%) for $\nu_{\rm e}$ ($\bar{\nu}_{\rm e}$)
- ► Peripheral sample with less stringent containment and high particle ID

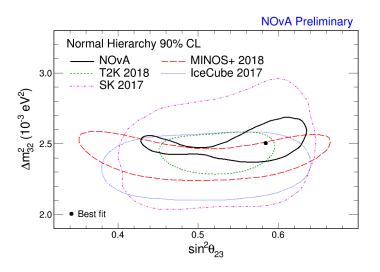
0.66

6.85

 $ightharpoonup > 4\sigma$ evidence of $\bar{\nu}_e$ appearance in $\bar{\nu}_\mu$ beam

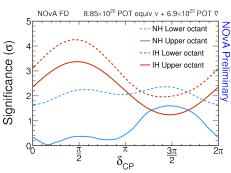
Observed 58 ν_e CC events Exp. 30 ($\pi/2$ IH) to 75 ($3\pi/2$ NH) Total bkg. 15.1 events $\bar{\nu}_e$ beam ν_e ν_μ ν_τ NC cosmic

0.37


3.21

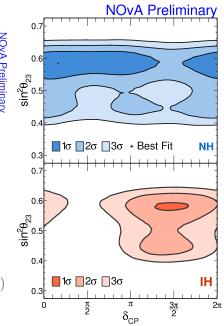
0.63

Observed 18 $ar{ u}_e$ CC events					
Exp. 1	Exp. 10 (3 π /2 NH) to 22 (π /2 IH)				
Total bkg. 5.3 events					
ν_{e}	beam ν_e	ν_{μ}	ν_{τ}	NC	cosmic
1.13	2.57	0.07	0.15	0.67	0.71

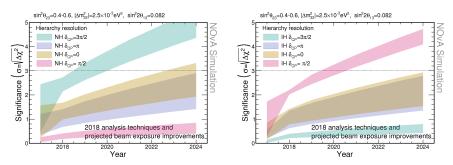

3.33

θ_{23} and Δm_{32}^2 with NOvA's friends

▶ 90% C.L. region is consistent with other experiments


δ_{CP} and θ_{23}

- ▶ Prefers NH for all $\delta_{\rm CP}$ at 1.8σ
- ▶ Disfavors $\delta_{\rm CP} = \pi/2$ in IH


Best fit:

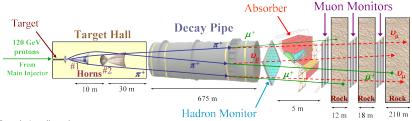
Normal hierarchy, $\delta_{\rm CP}=0.17\pi$ $\sin^2\theta_{23}=0.58\pm0.03$ (upper octant) $\Delta m_{32}^2=2.51^{+0.12}_{-0.08}\times10^{-3}~{\rm eV}^2$

Future prospects

Mass hierarchy determination

- Expect to extend running until 2024 with accelerator upgrades up to 900 kW and an equal total exposure in both ν and $\bar{\nu}$ beam modes
- ► Based on projected 2018 analysis techniques
 - Possible 3σ sensitivity to hierarchy by 2020 in case of favorable true values of parameters (NH + $\delta_{\rm CP} = 3\pi/2$)
 - ▶ 3σ for 30-50% of all $\delta_{\rm CP}$ values by 2024 otherwise

2019 works in progress

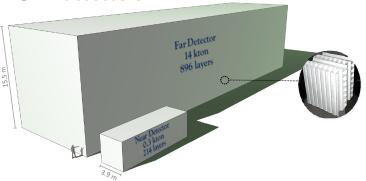

- \blacktriangleright 2018 results paper finalized for submission ($\sim 10^1$ days)
- ► Test beam program running to study detector response in detail and get potential analysis improvements systematics reduction, validation and training of reconstruction or machine learning algorithms, simulation improvements
- ▶ 2019 incremental campaign with $\sim 12 \times 10^{20}$ POT antineutrino data (complete antineutrino set), top up results to be ready in \sim month and to be presented during summer
- \blacktriangleright Beam switched back to neutrino mode, expecting about additional 5-6 \times 10^{20} POT of neutrino data for 2020 analysis
- ▶ 2020 analysis preparations: reoptimizing selections, wrong-sign background studies, neutron response, upgrading Near/Far technique? etc. etc.
- ▶ T2K collaboration: already 2 joint workshops, addressing common issues and problems, sharing some of the strategies to resolve them (e.g. neutrino interaction model), planning+preparing a joint analysis (\sim after 2020)
- ▶ Beyond ν_{μ} and ν_{e} : ongoing NC/sterile analysis (both long-baseline and short-baseline), NC Coherent π^{0} submitted (arXiv: 1902.00558), 2019 expected results/papers: NC Disappearance with Antineutrino, ν_{μ} CC π^{0} Inclusive, ν_{μ} CC Inclusive, Seasonal Multi- μ Effects

Summary

- ▶ First antineutrino data from NOvA (6.91 $\times 10^{20}$ POT) has been analyzed together with neutrino data (8.85 $\times 10^{20}$ POT)
- ► Neutrino data results published (Phys. Rev. D 98, 032012), neutrino+antineutrino results almost ready for submission
- ▶ NOvA observes $> 4\sigma$ evidence for $\bar{\nu}_{\rm e}$ appearance in $\bar{\nu}_{\mu}$ beam
- ▶ Joint $\nu_e + \nu_\mu$ analysis of 2018 $\nu + \bar{\nu}$ datasets
 - ightharpoonup $\sin^2 \theta_{23} = 0.58 \pm 0.03, \Delta m_{32}^2 = 2.51_{-0.08}^{+0.12} \times 10^{-3} \text{ eV}^2$
 - ▶ Prefers normal hierarchy at 1.8σ and disfavors inverted hierarchy for $\delta_{\rm CP}=3\pi/2$ at $>3\sigma$
 - ightharpoonup Rejects maximal mixing at 1.8σ and the lower octant at a similar level
- ▶ Expect running up to 2024 with equal total exposure in both ν and $\bar{\nu}$ beam modes
- NOvA can reach 3σ sensitivity for the mass hierarchy by 2020 in the most favorable case (NH, $\delta_{\rm CP}=3\pi/2$) and cover more than 30% of all values of $\delta_{\rm CP}$ by 2024

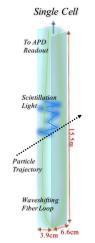
Thank you for your attention

Fermilab NuMI beam

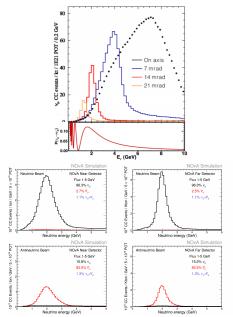

2018 analysis collected exposure:

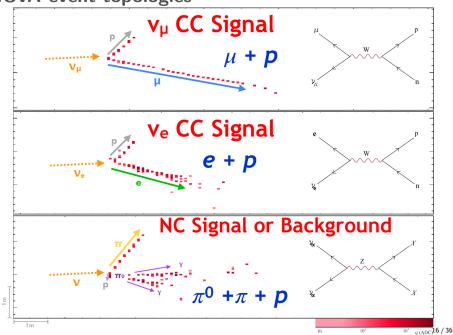
neutrino: 8.85×10^{20} POT of 14 kton equivalent **antineutrino:** 6.91×10^{20} POT (to Apr 2018)

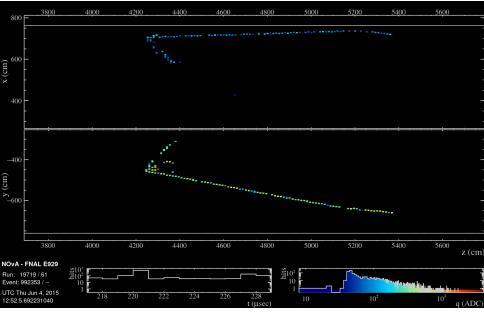
- ► Since Jan 2017 at designed 700 kW (> 18 ×10¹⁸ protons/week) the most powerful neutrino beam
- ► 120 GeV protons from the Main Injector at Fermilab in 10 μs spills
- Magnetic focusing horns allow selection of charge sign of secondary particles (π, K) , thus effectively selecting a neutrino or antineutrino beam


NOvA detectors

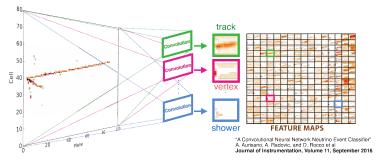
- ► FD on the surface, ND more than 90 m underground
- Consist of extruded plastic cells with alternating vertical and horizontal orientation for 3D reconstruction
- ► Filled with liquid scintillator, tracking calorimeter with 65% active mass (FD 14 kton, ND 0.3 kton)
- ▶ More than 344 000 (FD) and 20 000 (ND) readout channels



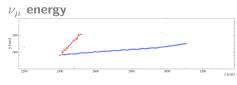

Off-axis concept


- ► Both detectors 14.6 mrad off the NuMI beam axis
- Narrowing the energy spectrum around the oscillation maximum (~2 GeV)
- ► Reducing backgrounds with broad energy distributions
- Reducing contamination of wrong-sign neutrinos
- ightharpoonup cross-section about $3 \times$ lower than for ν

NOvA event topologies

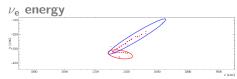


NOvA ν_{μ} event



Classification of neutrino interactions

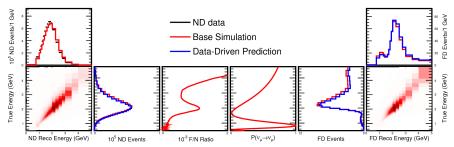
- ► Pioneering the use of CNN (Convolutional Neural Networks) for particle classification in neutrino physics
- ► CVN = Convolutional Visual Network treats every interaction in the detector as an image with cells being pixels and collected charge being their color, extracting basic "features" from the data
- ► INPUT: calibrated 2D pixelmaps; OUTPUT: multi-label classifier based on final state particle multiplicities
- ▶ Used in all main analyses (ν_{μ} , ν_{e} and NC) together with additional supporting PIDs (separate ν_{μ}/ν_{e} cosmic rejection, muon reconstructed track)
- ► CVN trained separately for neutrinos and antineutrinos, included cosmic data



Energy reconstruction

$$E_{\nu_{\mu}} = E_{\mu} + E_{\text{had}}$$

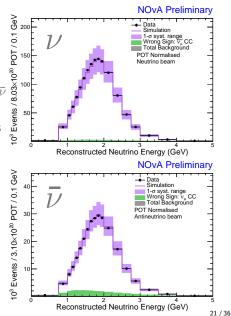
- $ightharpoonup
 u_{\mu}$ energy as a sum of μ and hadronic energy
- $ightharpoonup \mu$ energy estimated from the length of the track
- ► Hadronic energy from calorimetric reconstruction


 ${\it E}_{
u_e} =$ quadratic func. of ${\it E}_{
m EM}$ and ${\it E}_{
m had}$

- ► Both energies reconstructed calorimetrically
- ► EM shower (EM "prong") identified with a single-prong CVN variant
- Remaining activity is accounted for hadronic energy

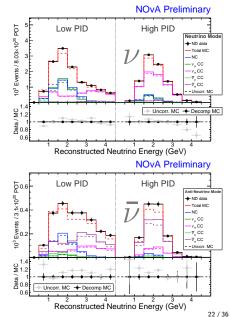
Data-driven predictions

- ► The neutrino spectra is measured in ND before oscillations, this is a combination of neutrino flux, cross section and efficiency
- ► The measured spectra are used to make predictions of observations in FD using the Far/Near ratio, i.e. adjusting FD MC
- ▶ Due to similar functionality of both detectors, this technique largely cancels the flux and cross section systematic uncertainties

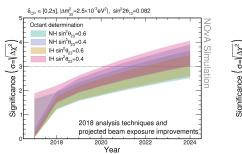

 $\begin{array}{c} \text{ND } \nu_{\mu} \longrightarrow \text{FD } \nu_{\mu} \text{ sample} \\ \text{ND } \nu_{\mu} \longrightarrow \text{FD } \nu_{e} \text{ signal} \\ \text{ND } \nu_{e} \longrightarrow \text{FD } \nu_{e} \text{ background} \end{array}$

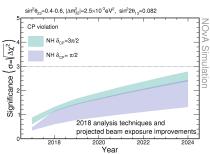
$u_{\mu} + \bar{\nu}_{\mu}$ disappearance analysis

Near detector data


- ▶ Selected ν_{μ} and $\bar{\nu}_{\mu}$ charged current events in ND
- \blacktriangleright Wrong sign contamination in ND is estimated to be 3% for ν and 11% for $\bar{\nu}$ beam
- ► The data is split in 4 equal populations (quantiles) of hadronic energy fraction as a function of reconstructed energy
- ► Energy resolution varies from 5.8% (5.5%) to 11.7% (10.8%) for ν ($\bar{\nu}$) beam, better for lower hadronic energy fractions
- ► Most background appears in quantiles with higher hadronic energy fraction
- ▶ Also used to predict ν_e signal

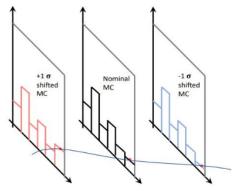
$\nu_e + \bar{\nu}_e$ appearance analysis


Near detector data


- Split into regions of low and high PID (CVN score)
- ▶ Used to predict FD appeared ν_e background
- ν beam background components constrained:
 - 1. beam ν_e share the common parents with $\nu_{\mu} \nu_e$ content can be estimated by constraining π and K from contained and uncontained samples of ν_{μ}
 - **2.** ν_{μ} component using Michel electrons
 - **3.** remaining data/MC discrepancy is accounted for NC interactions
- $ar{
 u}$ beam components scaled evenly to match the data

Future prospects

Octant θ_{23} and δ_{CP}



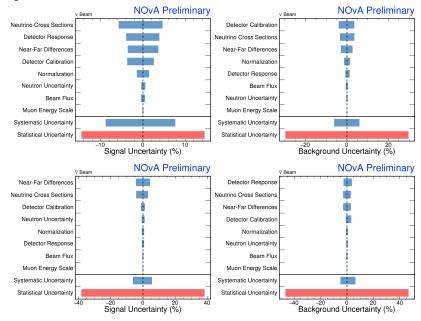
- ► Based on projected 2018 analysis techniques
 - ▶ Depending on the true values of parameters about 3σ sensitivity to θ_{23} by 2024 (both orderings, all $\delta_{\rm CP}$)
 - 2+ σ sensitivity to CP violation in case of $\delta_{\rm CP}=\pi/2$ or $3\pi/2$ by 2024

Systematics

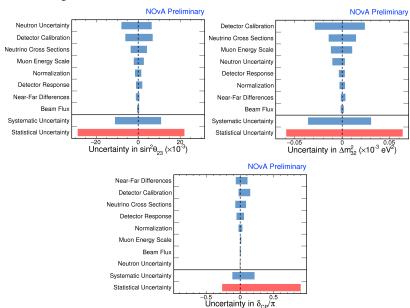
- ► Analysis joint fit includes more than 50 different systematics
- Most are generated with $\pm 1\sigma$ and $\pm 2\sigma$ shifts (file-based only $\pm 1\sigma$)
- ► Interpolation between shifted points

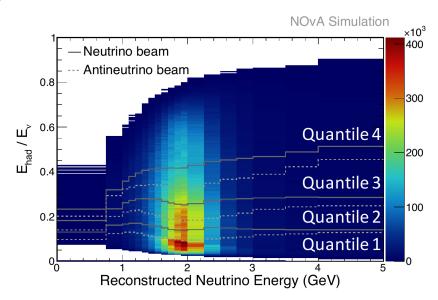
ν_e systematics

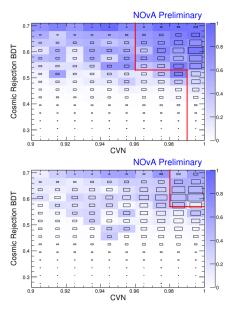
	ν_e systematics			
	ν_e Signal	ν_e Bkg.	$\bar{\nu}_e$ Signal	$\bar{\nu}_e$ Bkg.
Source	(%)	(%)	(%)	(%)
Cross Sections	+4.6/-5.7	+3.5/-3.3	+3.0/-4.2	± 2.9
Detector Model	+3.8/-4.0	+1.3/-0.8	± 0.6	+3.6/-2.6
ND/FD Diffs.	± 3.6	+2.6/-2.9	± 4.3	± 2.8
Calibrations	+2.6/-3.7	+3.5/-3.9	± 1.2	+3.2/-0.8
Others	± 1.5	± 1.5	+1.2/-1.0	± 1.0
Total	+7.6/-8.8	+6.0/-6.2	+5.6/-6.2	+6.3/-4.9

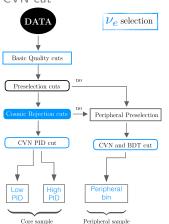

Joint fit systematics

	$\sin^2 \theta_{23}$	$ \Delta m_{32}^{2} $	δ_{CP}
Source	$(\times 10^{-3})$	$(\times 10^{-5} \text{ eV}^2)$	(π)
Calibration	+6.9 / -6.1	+2.4 / -2.9	+0.15 / -0.02
Neutron Model	+6.4 / -7.9	+0.3 / -1.0	+0.00 / -0.01
Cross Sections	+4.2 / -3.5	+1.5 / -1.4	+0.09 / -0.07
E_{μ} Scale	+2.6 / -2.1	+1.0 / -1.2	+0.02 / -0.00
Detector Model	+1.9 / -1.0	+0.3 / -0.3	+0.06 / -0.05
Normalizations	+1.4 / -1.5	+0.3 / -0.3	+0.03 / -0.02
ND/FD Differences	+0.6 / -1.1	+0.3 / -0.1	+0.11 / -0.06
Beam Flux	+0.4 / -0.5	+0.2 / -0.2	+0.01 / -0.01
Total Systematic	+9.6 / -11	+3.2 / -3.5	+0.21 / -0.11
Statistical	+22 / -29	+6.4 / -5.9	+0.90 / -0.27
Deadistical	122 / -23	10.47 -0.5	10.00 / -0.

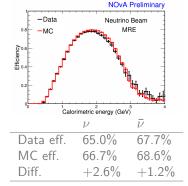

$\nu_{\rm e}$ systematics: Far/Near technique effect


ν_e systematics

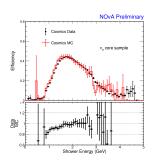

Joint fit systematics


u_{μ} resolution binning

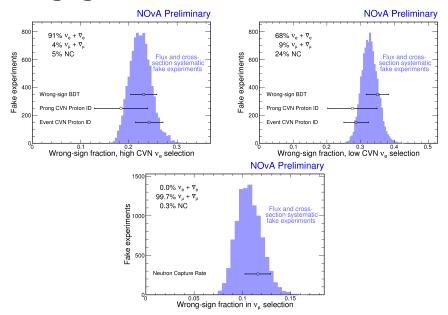
ν_e peripheral sample



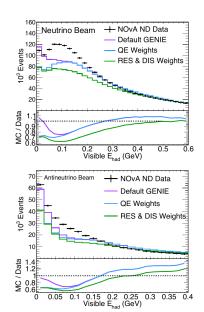
► Events failing the "core"selection can pass a BDT cut plus a tight CVN cut


Data-driven checks of CVN

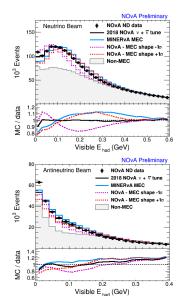
In ND remove μ track and replace with simulated electron in both data and MC



► In FD isolate the bremsstrahlung showers in cosmic rays data and MC to create a control sample

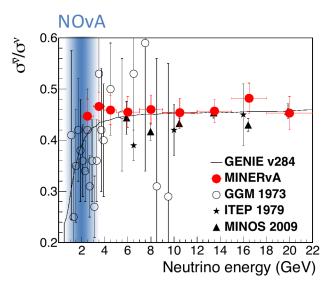


Wrong-sign fraction cross check

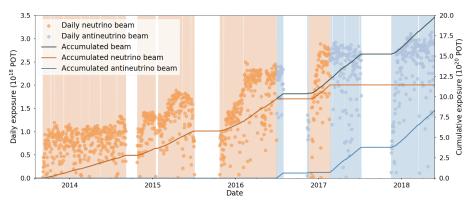


Neutrino interaction tuning

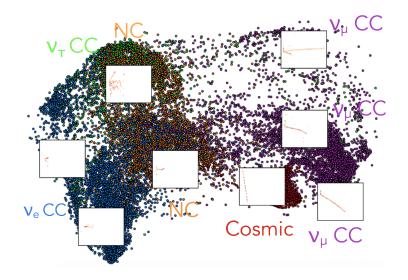
- \blacktriangleright Tuning done independently for ν and $\bar{\nu}$ beam samples
- ► Correct quasielastic (QE) component to account for effect of long-range nuclear correlations using model of València group via work of R. Gran (MINERvA) [https://arxiv.org/abs/1705.02932]
- ► Apply same long-range effect as for QE to resonant (RES) baryon production.
- Nonresonant inelastic scattering (DIS) at high invariant mass ($W>1.7~{\rm GeV}/c^2$) weighted up 10% based on NOvA data



Neutrino interaction tuning


- ► Introduce custom tuning of GENIE
 "Empirical MEC"[T. Katori, AIP Conf.
 Proc. 1663, 030001 (2015)] based on
 NOvA ND data to account for
 multinucleon knockout (2p2h)
- ► Shape uncertainty on the NOvA 2p2h tune is established by re-fitting using variation of the model with correlated systematic shifts to QE and RES
- ► The MINERvA collaboration's tuning to their data resulted in similar shape features to our assumed uncertainties

Cross section ratio


MINERvA, Phys.Rev. D95 (2017) no.7, 072009

2018 NuMI beam performance

- ► Running since 2013
- ▶ Since Jan 2017 at designed 700 kW (> 18 \times 10¹⁸ protons delivered/week) the most powerful neutrino beam

Classification of neutrino interactions

