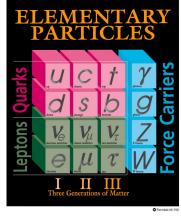
Precision detectors for the flavour (=B)-physics

Zdeněk Doležal

Charles University in Prague, The Czech Republic

External seminar IPNP, Mala Skala 2019

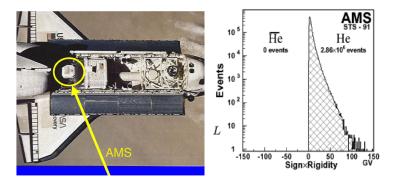

Why is FP interesting?

- striking pattern of SM
- flavour symmetries
- CP Violation
- matter antimatter asymmetry
- probing beyond SM physics

Scope of this review

- charm and beauty physics
- little about s quark
- no leptons

no top

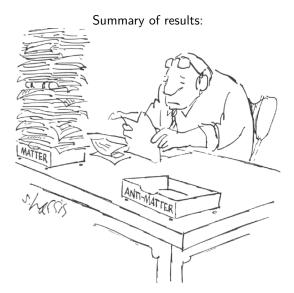

+antimatter

Baryon Asymmetry in Universe (BAU)

At the Big Bang particles and antiparticles created in pairs. Our universe now is composed of matter only (and a lot of photons). Where is the antimatter?

Potential signals:

- annihilation photons
- anti ⁴He nuclei in the cosmic rays (AMS, PAMELA,...)



Baryon Asymmetry in Universe (BAU)

10 (95% C.L.) 10⁻²1 Aizu et al. 61 Evenson 72 10 Smoot et al. 75 antihelium—to—helium ratio 10 Buffington et al. 81 10 5. RESS 95 BESS 93+94+95 AMS 98 10 BESS 93-00 107 PAMELA (2004-2006) 10⁻⁸1 10-1 102 10 rigidity (GV)

Summary of results:

Baryon Asymmetry in Universe (BAU)

Baryon Asymmetry in Universe (BAU): possible mechanism


Observed number

$$rac{\Delta N_B}{N_\gamma} = rac{N_{bar} - N_{bar}}{N_\gamma} = 10^{-10}$$

Sakharov (1967)

3 conditions necessary to get the matter-dominated universe:

- baryon number violation
- O & CP Violation
- thermal inequilibrium

Baryon Asymmetry in Universe (BAU): possible mechanism

Observed number

$$rac{\Delta N_B}{N_\gamma} = rac{N_{bar} - N_{b\bar{a}r}}{N_\gamma} = 10^{-10}$$

Sakharov (1967)

- 3 conditions necessary to get the matter-dominated universe:
 - baryon number violation
 - O & CP Violation
 - thermal inequilibrium

Nobel Peace Prize 1975 Internal exile in Gorky

King Gustav III of Sweden (1746-1792) wanted to ban coffee, because he believed in its toxicity. He wanted to prove it scientifically, so he (reportedly) realized a *S*wedish coffee experiment.

- two identical twins sentenced to death kept alive in prison
- one had to drink three pots of coffee everyday
- second had to drink three pots of tea everyday
- two doctors appointed to supervise and report

Precision Measurement: Swedish Coffee Experiment

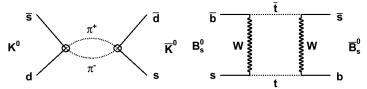
King Gustav III of Sweden (1746-1792) wanted to ban coffee, because he believed in its toxicity. He wanted to prove it scientifically, so he (reportedly) realized a *S*wedish coffee experiment.

- two identical twins sentenced to death kept alive in prison
- one had to drink three pots of coffee everyday
- second had to drink three pots of tea everyday
- two doctors appointed to supervise and report

Outcome of Swedish Coffee Experiment

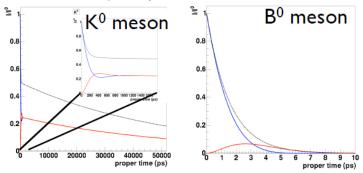
- first of all, both doctors died
- king Gustav was assasinated in 1792
- tea drinker died first, at the age of 83
- the date of death of the surviving coffee drinker unknown

Outcome of Swedish Coffee Experiment

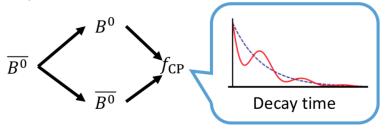

- first of all, both doctors died
- king Gustav was assasinated in 1792
- tea drinker died first, at the age of 83
- the date of death of the surviving coffee drinker unknown

Lessons

- build the control sample (another twin)
- study aging/hardness of your detectors
- time your experiment reasonably (theorists, funding agencies might not wait/live)
- be prepared for the unexpected



Flavour eigenstates M^0 and \overline{M}^0 can mix into each other This is described by the Schrödinger equation (coherent state) $\frac{\partial}{\partial t} \begin{pmatrix} M^0 \\ \overline{M}^0 \end{pmatrix} = H \begin{pmatrix} M^0 \\ \overline{M}^0 \end{pmatrix} = (M - \frac{i}{2}\Gamma) \begin{pmatrix} M^0 \\ \overline{M}^0 \end{pmatrix}$ $M_{S,L} = pM^0 \pm q\overline{M}^0$ physical states $\Delta m = m_L - m_S$: oscillation frequency $\Delta \Gamma = \Gamma_S - \Gamma_L$ decay width/lifetime difference


Neutral meson (K^0, D^0, B_d^0, B_s^0) oscillations

Flavour eigenstates M^0 and \overline{M}^0 can mix into each other This is described by the Schrödinger equation (coherent state) $\frac{\partial}{\partial t} \begin{pmatrix} M^0 \\ \overline{M}^0 \end{pmatrix} = H \begin{pmatrix} M^0 \\ \overline{M}^0 \end{pmatrix} = (M - \frac{i}{2}\Gamma) \begin{pmatrix} M^0 \\ \overline{M}^0 \end{pmatrix}$ $M_{S,L} = pM^0 \pm q\overline{M}^0$ physical states $\Delta m = m_L - m_S$: oscillation frequency $\Delta \Gamma = \Gamma_S - \Gamma_L$ decay width/lifetime difference

Neutral mesons: perfect lab to study CPV

If neutral meson decays into a CP eigenstate f_{CP} , the decay can go directly or via a coherent state.

CP Violation classification

- CPV in decay (direct)
- CPV in mixing
- CPV in interference between mixing and decay

Need to measure CP violation as a function of time!

Ideal production process:

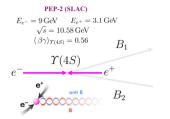
 $\Upsilon(4S)
ightarrow B_0 ar{B_0}$

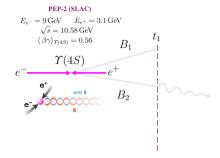
How to measure time with picosecond precision?

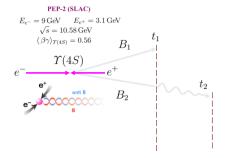
Convert to distance measurements?

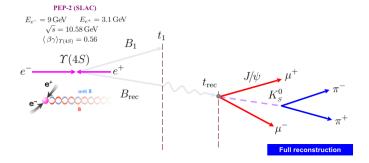
 $eta pprox 0.1, v au pprox 45 \mu {
m m}$

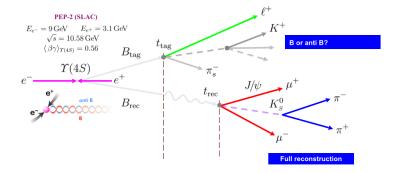
Out of reach as well

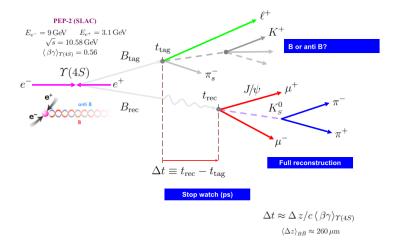

Trick: high-energy *B*-meson is relativistic: lives longer, gets further Production: High-energy collisions (LEP, Tevatron, LHC):

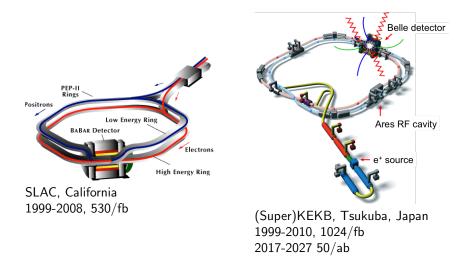

Observing e.g. $pp \rightarrow B_0 \rightarrow X$ as a function of *B*-displacement between creation and decay position


Second *B*-meson tells us flavour (B_0 vs $\bar{B_0}$)


PEP-2 (SLAC)


$$\begin{split} E_{e^-} &= 9\,\text{GeV} \qquad E_{e^+} = 3.1\,\text{GeV} \\ &\sqrt{s} = 10.58\,\text{GeV} \\ &\langle \,\beta\gamma\rangle_{\Upsilon(4S)} = 0.56 \end{split}$$





Comparison of experiments at electron and hadron machines			
	$e^+e^- o \Upsilon(4S) o Bar{B}$	$par{p} o bar{b} X$	$pp ightarrow b ar{b} X$
	BF/SuperBF	Tevatron	LHC
C.M. energy \sqrt{s}	10.588 GeV	2 TeV	14 TeV
Luminosity 10 ³⁴ /cm ² s	1/80	0.05	1
Production σ	1.2 nb	100 μb	500 μ b
Typical <i>bb</i> rate	12 Hz/960 Hz	100 Hz	500 Hz
Pile-up	0	1.7	0.5-20
<i>b</i> hadron mixture	$B^{+}B^{-}(50\%)$	$B^+(40\%),\ B^0(40\%)$	
	$B^0 \bar{B^0} (50\%)$	$B_s^0(10\%), \ \Lambda_b^0(10\%)$	
<i>b</i> hadron boost	small $\beta \gamma pprox 0.5$	large $eta\gammapprox$ 100	
Underlying event	$Bar{B}$ alone	Many add. particles	
Production vertex	Not reconstructed	Reconstructed	
$B^0 \overline{B^0}$ pair production	Coherent (from $\Upsilon(4S)$)	Incoherent	
Flavour tagging power	$\varepsilon D^2 \approx 30\%$	$arepsilon D^2pprox 5\%$	

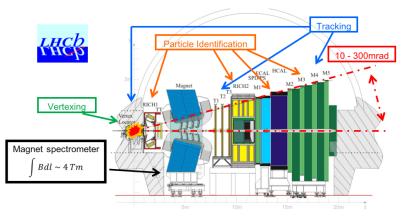
Adapted from arXiv:1305.4688

B-factories: (Super)KEKB and PEP-II

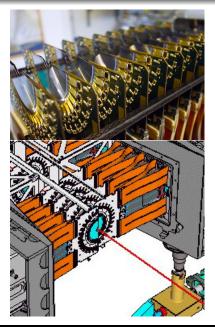
Detectors and Experiments for the Job

General requirements for the HEP detector

- trajectory and momentum measurements of charged particles
- hadron and γ energy measurement
- muon identification

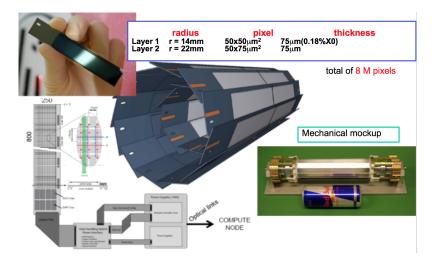

B-physics experiments at the precision era

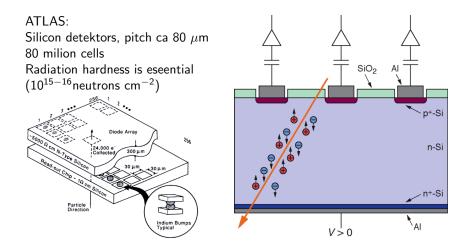
- vertex/timing measurement (tens of microns)
- particle identification (K/π)
- nowadays: missing E_T measurement (hermeticity)
- systematics under control (control samples, background estimates)


KL and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-EM Calorimeter: caps + barrel 1 inner layers) CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (endcaps) Particle Identification Time-of-Propagation counter (barrel) electrons (7GeV) Prox. focusing Aerogel RICH (fwd) Beryllium beam pipe 2cm diameter Vertex Detector 2 layers DEPFET + 4 layers DSSD positrons (4GeV) Central Drift Chamber He(50%):C₂H₆(50%), Small cells. long lever arm, fast electronics

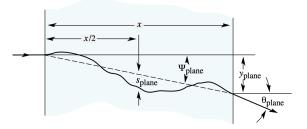
LHCb: forward precision spectrometer

Dedicated flavour physics experiment at the LHC


LHCb: VELO, RICH



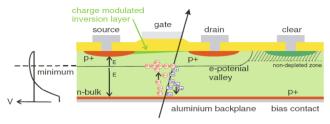
UCJF MS 2019


Belle II: Vertex Detector (DEPFET pixels)

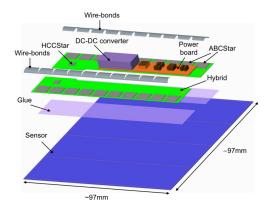
Vertex reconstruction: Si strips or pixels

Scattering by Coulomb potential of nucleus Affects particle track, crucial for tracking detectors

RMS of scattering-angle distribution: 2D-projected: $\Theta_{\rm rms}^{\rm proj.} = \sqrt{\langle \Theta^2 \rangle} \approx \frac{13.6 \,\,{\rm MeV}}{\beta c p} \sqrt{\frac{x}{X_0}}$ 3D space: $\Theta_{\rm rms}^{\rm space} \approx \frac{19.2 \,\,{\rm MeV}}{\beta c p} \sqrt{\frac{x}{X_0}}$ X_0 : radiation length (material characteristics)


Monolithic active pixels

Silicon used both in a detector and in processing electronics Why not integrated? Using the same wafer/substrate? This is not so easy: Electronics needs high conductivity Si


Detectors need high-resistivity Si (to achieve depletion) Several approaches to match these contradictions:

- Monolithic Active Pixels (CMOS)
- Monolithic Active Pixels (SOI)
- DEPFET Pixels

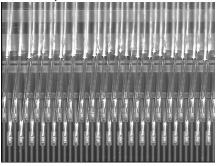
Minimizing material (thinning to 50 μ m)

How to make a detector: module

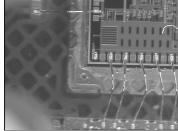
- Low mass (multiple scattering)
- Rigid, strong
- Low coefficient of thermal expansion (CTE)
- Good thermal conduction
- Restricted space
- Low cost (!)
- Radiation hard
- Works at low temperatures

Ultrasonic welding technique typically 25 μ m bond wire of Al-Si-alloy

Fully-automized system with automatic pattern recognition

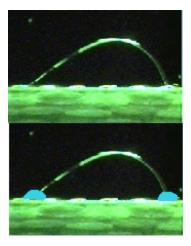


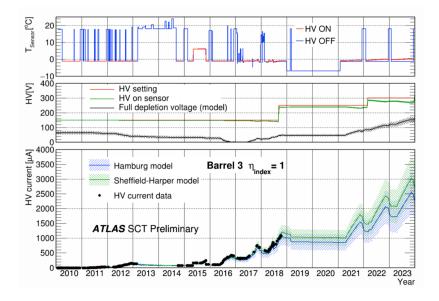
Automatic wirebonder



Wire bond connection: quality control

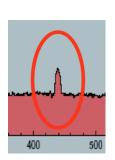
Pull test (>7 g)Visual inspection

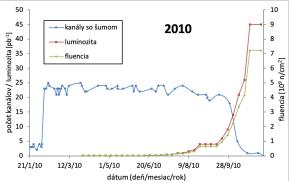




Pull test (> 7 g) CDF: Wirebonds orthogonal to 1.4 T magnetic field. If pulsed at the 'right' frequency the tiny Lorentz force (10-50 mg) can excite resonances which fatigue the heel of the wire bond. Eventually cracks are induced and electrical continuity lost.

Possible fix: Potting (encapsulation)




ATLAS strip detector HV current history

ATLAS strip detector: noise bumps

2005: Regions of noisy strips discovered. Tested with laser by Pavel Reznicek and Peter Kodys. Detection performance OK, but problems during testing. Hypothesis: charge stuck in oxide regions (hopefully will be released by radiation)

2013: Further behaviour of these strips studied by Lucia Meszarosova and Ina Carli. They disappeared with first neutrons generated at ATLAS.

UCIE MS 2019

- Great physics needs great detectors
- Great detectors need great people