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exotic object

for which degrees of

freedom are supposed to
be FINITE...




ordinary objects

for which degrees of
freedom are supposed
to be INFINITE or
DOUBLE that!
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* Quantum fields and horizons

For a quantum system with a finite
number of degrees of freedom all the representations of the cers
are|unitarily equivalent to the Shradinger ﬂ'—'p-}?'%Hf.“.rs.!.e’;s.!.if,r.rsl

a,a']l =1 ete. al0) =0
At
b0 =1 cte. bl0Y) =0
are related by a Bogolubov transformation generated by Gie)

h—= GaG ' and 0y = G

R

and G s well defined and unitary: G- =G,

For quantwmn fields (a — ag.. b — by) this does not hold any more:
G does not exist. Thus [0} and |03 ) would not be related any more by
a unitary transforation. The infinite set of representations |O(e))
are what we .:-5111|L'm.a of the CCRs. |




Clonsider a complex massive scalar quantinn field &fx) in -
dimensional Minkowski space time, with Lagrangian density

L(o". ¢) = Do O'd — me' o
As usnal, () can be decomposed in Minkowski modes {Ug(x )}

olx) =3 [apUp(x) + apl)(x)] .
I:i'

with & = (k. E) The quantim Hamiltonian is

Hy =Y wylaja, + aja) .
;I.

—

k|2 +m?. and a. a) (ag. ap) ave the annihilation
and creation operators, respectively, for particles (antiparticles)

.f
where wy = b +

ﬂ'ﬁ'|[].=”} = ﬂ.;l.|[]‘.'|”r}- — 1, vk,
and satistv the nsual CCRs

[I‘l’-;,-._ H-L] = 5;.;.! \ [ﬂ-]il-._ Eu!';__f] = '5F;'F;:" ;

To quantize the same olr) Ii]l presence of an horize ml. one expands

the field in terms of the complete set of functions {uy”(z)}. where

tiine has two causallv disconmected regions. Thns, one has

ar) =232

T op

(o) (m) (mhi (e
by Ty )+ by g (a ,I] :

where EJ;»}”:' anl bg;” are assumed to satisty the nsual CCORs.
By introducine

() _x~plTip o
Ell.rp — ;IZI Pﬂl |,er'l.]__| ﬂliullii .



.. . PR . .y . ,
and similarly for di7 i terms o ;. where {PY(k)} is a com-
plete set of orthogonal functions, the operators b7 and b}f] can be
expressed in terms of the [Bogolubov []'elthl'H]'H]cllin]lhl

bp = d\ coshe(p) + a’i—, "sinhe(p) = Gle)dy G

b}; 7N = d;‘f’llhlllhflp,' +dy 7 "coshe(p) = th_ld;‘j gre ll_f,l.

where p = (0, —Fk). and the generator ol the transformations is
(a) U7 gloyt gl
Gle) = exp {Zﬂj%flpl[ip dy ) :
At finite volinne Gie) is a unitary operator: G- le) = G{—e) =
G'e). The canonical operators rE}j”:' anl a’g}’ﬂ annihilate  the
Minkowski vacin |[]” ) & |[]E”J_‘;.~. On the other hand, the oper-

ators bi oanid bgfr] annthilate the vacimun

05 (e)y @ [0 e)) = Gle) |05y @ [05,)
[11 T&]lcl[ follows we shall keep the short-hand notation: |y =

|[]1,,r ] |[]51,,r]}-. alid [][E'fl_:': = |[]'-r+j|if'f|:.~ % |[]'i ][f']}_
The parameter € is given by

sinlie(p) = - —
! | EEMT — ]UE '

where T is related to the surface eravity of black holes, i the case of
Schwarzschild ceometry, or to the acceleration. in the case of Rindler
ceommetry, One can also show that the total (not nonmal-ordered)
Hamiltonian is eiven by

Pl () (m)i
H, :;%mz[bf“ b7+ by by
_ HH:'{E'] o H( ][-E.:l-



* Vacuum and Entanglement

We have Gle): H — H,.. or G YHe): H, — H. The physical
meaning of this freedom s that we can arbitrarily choose to express
Minkowskian quantities in terins of generic e-quantities. or the other
way arotnd. We choose, for instance, to express the Minkowskian
vacinnn in terms of the generic e-vacin

Oy = G Helole)) .
Ganssian decomposing, the Minkowski vacinun can be expressed as
a SUT, 1 < SUT, 1) generalized coherent state of Cooper-like pairs

. 1 c o |
0ar) = — XD [;% tu]l]lfi’p’jlbgfj'b;‘; fﬂ'} 0(e))

Doy
where £ =11, cosh™ e(p).

[ the contimuun limit in the space of momenta, i.e. in the infinite-
volime limit, the munber of deerees of freedom becomes nneotmntable
mhnite

L

{[][E']|[]M;‘;. 0 as VoL e
"i[]'if'fl|[]ff-“']} —~0 as V — . H‘FJE__ Er‘ ) ? E’_.

where Vois the vohune of the whole () — 1i-dimensional space.
This means that i this limit the Hilbert spaces 'H oand A, become

nnitarily inecuivalent .|cm¢1 e labels the set { H,, Ve} of the infinitely

Tradly CTs of The CU s,



What about the entanglement of the vaciinm [0y 7 First we rewrite

H el
TPV ) e N
|[]‘-1”r.; = EHH[EJ’} + %: [:l]]]]fltp_ll_“!} ._[]_; |[]._ 133 /
+]\ : . LI
+0, 17y @ (10,0 + ...
where |-r?.£;”3, ) = |1£}Tj, . lg;::]._ Uy, and similarly for antiparticles.

[ T stands for a particle. and | for an antiparticle. the two-particle
state in [y can be written as

SN o | 1N [ o | 1N
| T @ | I+ 1" e |1

[

which 1s an entangled state of particle and antiparticle living in the
two cansally disconnected reglons (4.

This mechanism takes place at all orders in the expansion, thns the
whole vactun [Oyr) is an infinite superposition of entangled states

) +o —_— .
Uy = 3 VW, Entangled),

n=I(
where
W sinh?™ ¢(p)
‘n — 1;1 :_-[]h]lgt”""—i_z] e(p) .
with

VW, <1 and S W, =1

n=I0



* The Entropy Operator

The munber of modes of the tvpe bif’r] NTRIUTIRE
"‘»;}HJ = *.:[]5”|hgfﬁbi‘.}gj|[];”:;- — hi]]]]gflip'] . T =1,

and similarly for the modes hgﬂ.
Lot s define S (e) and SUe) as

Sf+j|i(_-':| — SI,'—i—','II-"E'] + S‘l.r+:||if':|
= — E[FJL”*EJL” Insinh® e(p) — bfﬁjbffﬁ Incosh? e(p)
[T
+(bh— b)) .
SHey =8 ey + 8 e
— —Z[bﬁ, “bg; Hl]hi]]]]%[;ﬂ) — bf;, :'hi 10 cosh? el p)
P

+(bh — b}].



By coumting the munber of occupation states in the vacmum Oy}
with the munber operator for particles foar] - bfﬁb}fj_ we st
subtract those occupation states counted by the operator b}fj bgf’rﬁ =
| + 1-"'&-%”}. where ;"‘Jr}[g] is the number operator for the antiparticles.
This accounts for omr definitions of the entropy operators

S ey = — % lﬂ-}fﬂ 111,.-&-‘}55;1 — (1 + Ny (o) ) In (1 —|—..-'R-'}Egj) + (b — fJ'II]

[ terms of the coetlicients W,

‘ -:- ] .I_-h I:I-1'||E||[]J'||If';. = — Z 11':?”_ ]“ ‘I.I".—”.‘
n-(

[t 15 easy now to prove that W, =TI, sinhi*™ e(p)/ cosh?!

tip+2) €lp

The vactunm can be written in the form

: () g
Oy = e st/ 3

Hj_;u:[]

ql+ "
52 Z 5 |n (7). n- '”_;1

np=0a=:

I E;H 0) |[].-ﬂ_f3 ] + |0, ﬂ}fj} |'I1L j.[]}-

where, accordine to the notation mtrodnced above

- e
|'ﬁ.;‘fjl?1£—; "y = |Entangled),,, .
Hence,
Oy) = 3 eyl Insinhe(p)—(l4ny) Incoshe(p)] 5~ (™ nb ")
Hr_;.z[] T=-
- Ny ff i [ '-T::I"'.
— 3 [[tanh ffl,pllc_-clhh Elpl |n gy )
H.r}=[] P 1

— > W, X [nnl 7y
1||| fip P P J
”'.i'-:'z[] Tr=x



The operator SH ey = W e) + S e) is the stumn of the cntropy
operators for the boson gas of particles and antiparticles in the sec-
tor (+). similarly for SUJe) in the sector (—). The total entropy
operator is given by

S, = SHJ[P] — St ]Iﬁ'f'],
ancl. as for the Hamiltonian, it is the difference of the two operators.
Also. [S., Gle)] = 0. hence S, |0z ) = 0. This means that one can
arbitrarilv choose one of the two sectors. ¢ = +. to “measure the

correspondent entropy SEI ey relative to the eround state [Oar). Let
s work in the sector a = +.

One compites

f_'?[+:'|fffl|[]lfft'} = —23 In cosly’ €(82),
0k

(0(€)

which diverges dne to g I the entropy operator is normal-ordered.
ncosh? e(€) is removed and the expectation value of the entropy
vanishes.

HYHhJSHHE]nv]mn*hnhmheulhvarmn'u{Hhﬂ.nudlnﬂ[ﬂ
HHEﬁTTﬁuwvﬂﬂtn{ﬂmhn"rnmanwdmwmnmn1{HML9Hﬁwﬁwﬂﬁhh

: L ST, : T e PP I P
hnﬂrfﬁlﬂnhnﬂrdeJ—uwﬂ@fd!ﬂhruqrfﬁ!ﬁ.

This diveroes too, but this time even if the expression is normal-

ordered the resnlt s never zero.



* Two examples

If-{f-f.w{'rf-r:.wr*f.‘ . I
We shall derive the thermodynamical properties of black holes de-

scribed by the Selwarzschild ceometry

QG M 2GMY !
ds? — (1 _ )nzr?— (1 _ ) dr? — r2(d6? + <in? 0do?)

I r

where the space-time is taken to be d-dimensional. The event horizon
i= civen by rg = 2G M. and the Bekenstein-Hawking temperature is
T ~rgt = (2GM)

We want to compute the finite part of the entropy by moving to the
contitnmn limit. taken to be formallyv identical to the Minkowskian

o1

Tl-"r L
2 = -'-}m-aﬁl d“fdzk‘
ok =

o]

where Vs the S-dimensional volimme of the whole space-time.

The entropy density -f;.!-il'r-l_\'lliftl_\;r‘q“r =V 1{[];”|Si+j|if']|[]5”} IS

—9
BmE f] d) sinh? e( Q) Insinh? (€2 — cosh® () I cosh? e(0) ] [dgﬁ.
.-'I.|
[f’: cxpressing €02 as a hinetion of £2 one can compute the integaral
Lo obtain

.i;
/ |;+‘.II f
€)= d’k .
'H'}'H'IB

which is again divereent. as expected. We nse a cutoft e of the order
of the Planck momentum ke ~ kp = Ipt = G2 Owr entropy
density is then given by

S
b
~




Being the proper volume in the Schwarzschild geometry

Virop = [ Vo GrrGo0 g drdfdy

only defined for » > rgq. we now have to compute the entropy for
the spherical shell of vadii rg and rg + 4. The vohune of the shell is
ojven by

/9
) 1+h .’1":-’;‘
Y = dnrd . ———drx re .
- v — |
where b = 8 /rg is chosen by requiring the munerical factor of pro-
portionality to be O(1). Since ke = kp. and recalling that the

Bekenstein-Hawking temperature is T~ rg'. we obtain the upper

boune for the entropy

(S eV =V (s e))y = 12,

Hence the entropy is proportional to the horizon area A of the black

Liole and 1= bounded from above,
|Hx?m££f'-fi |

[Te Rindler Hat space-time (corresponding to an observer moving

with constant acceleration a) is described by the line elemnent
a ; y 2
ds® = e*(dr? — de?) — dy® — d2?,

which reduces to Minkowski space-time letting

i al
et €

t = —sinhar., r=—coshar.
{r ‘1

As the sitace cravity of the black hole is the gravitational aceel-
eration at radius romeasured at inbinity, for the Rindler space-time
restlts are formallv equivalent to the Schwarzschild case.



The metric covers a portion of Minkowski space-time with x > |¢].
The bonndary planes are deternined by @ 4+ ¢ = (),
Davies and U have shown that the vacmnn state for an iner-
tial observer is a canonical ensemble for the Rindler observer. The
temperature Tp characterizing this ensemble is

a

THZ_—.

This is the thermalization theorenn. in o mtshell.
The proper vohume is given by
. N 0 | A
Vrop = [ Ve Gyy Gz dEdydz = [ § e™ d¢ f dydz = —
where A = fdydz is the area of a sirtace of constant € and 7. The
entropy density is computed for a entoff on the momenta ke S Ip',

and is eiven by

2
TRV aks
fal) o (
Ve E = .
SO = e

Hence, the entropy computed m the volmme Vi, (by considering
that due to the Unral effect T~ a) 15 given by

' k = - w‘dl
(S e)y s

IM ~S 75 -

2
P

Thus. also in the Rindler case the entropy is proportional to the area
of the event horizon and bounded from above.

[t 1= an interesting question imvestigating the relation between the
derivation of these formmilae and the holographic principle.



* Finite, infinite and doubly-infinite
degrees of freedom

i
1 bit of
information
on every

0.724 % 1065 cm?
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