

Particles and radioactive nuclei in medicine

Magdalena Kowalska UNIGE, DPNC

Magdalena.kowalska@unige.ch www.cern.ch/isolde

Outline

- Sensitive medical diagnosis with
 - > Radioactive nuclei
 - > Particle detectors
- Selective cancer treatment with
 - ➤ Radioactive nuclei
 - Accelerated particles = hadron therapy

Medical diagnosis

- Use sensitivity of particle and radiation detection
- Diagnosis with radioactive nuclei:
 - Radioactive nucleus usually connected chemically to a biological 'ligand'
 - 'ligand' finds areas to be diagnosed: sugars go to cells that need energy, e.g cancer
 - > Emitted radiation shows the localisation of the interesting region
 - > Efficient particle detectors detect very low unharmful nM or pM concentrations
- Suitable isotopes:
 - Isotope of element that can bind to biological ligands
 - Lifetime long enough for delivery and short enough for a body: hours to days
 - Right type of radiation and its energy
- Detection: radiation not particles, because it gets stopped less in the body
 - Gamma rays from decay or annihilation of emitted beta+ particle
- Approaches (nuclear medicine):
 - ➢ PET
 - SPECT

PET: Positron emission tomography

- Signal from beta+ (positron) emitting nuclei
 - Emitted positron stops after travel of some mm in tissue
 - Positron = antimatter, so it annihilates with an electron from a neighbouring molecule (E=mc2)
 - 2 gamma rays of 511keV are emitted at 180 degrees
- Detection:
 - Based on time and position of hits in detectors, place of annihilation is identified

PET

Some of 1st PET isotopes in the world were produced at ISOLDE and later investigated together with the creators of the PET technique at the Geneva Hospital

Strengths:

5

- Extremely sensitive
- Relative weaknesses:
 - ➤ Time resolution of detectors crucial -> can pinpoint annihilation location better
 - Coincidence between 2 gammas: relatively complex machine and event reconstruction
 - Positron can travel several mm before annihilating: limit in resolution

SPECT: Single photon emission computed tomography

- Signal from gamma-emitting nucleus
 - > Direct gamma emission from nuclear isomeric state
 - Gamma emission following beta decay
- Detection:
 - Collimated gamma detectors determining direction from which came gammas
 - > 3D image reconstructed based on number of counts behind each collimator

SPECT

- Isotopes:
 - > Relevant t1/2
 - > Emission of easily detectable gamma rays
- Strengths:
 - ➤ Less complex than PET
 - > Still rather sensitive
- Relative weaknesses:
 - Less sensitive than PET (collimation)

Detectors for medical diagnosis

New 511-keV **PET detectors** from fundamental research:

- Detectors with ns and ps time resolution better localisation:
 - As in ATLAS tracer: monolytic Si detector TT-PET project, Uni Geneva
 - Fast scintillating crystals from CMS: CrystalClear at CERN
 - > As in nuclear fast timing: U Complutense Madrid
- Cheaper materials:
 - Organic scintillators: J-PET in Krakow

More sensitive **x-ray detectors**:

MEDIPIX segmented detector from CERN

Cancer treatment with radionuclei

- Treatment via cell (mostly DNA) damage:
 - ➤ High dose beta radiation
 - Alpha radiation: heavier, so shorter range but higher lethality
- Isotope delivery to cancer as in diagnosis: connection to ligand
- Isotope:
 - Suitable half-life
 - Alpha emission

New medical isotopes

Theranostics

- Theranostics = therapy and diagnostics together
 - ➤ One isotope does diagnosis
 - ➤ Another isotope of the same element: treatment
- At ISOLDE and Medicis

Dy 150 7.2 m 4; β ⁺ α 4.23 γ 387	Dy 151 17 m 4: a 4.07 7,386; 49: 546; 176 a: m	Dy 152 2.4 h	Dy 153 6.29 h 4; β ⁴ α 3.46 γ 81; 214; 100; 254	Dy 154 3.0 - 10 ⁶ a	Dy 155 10.0 h	Dy 156 0.056	Dy 157 8.1 h	Dy 158 0.095	Dy 159 144.4 d	Dy 160 2.329	Dy 161 18.889 #600 #a.e <1E-6	Dy 162 25.475
Tb 149 42 m 4.1 h 5 - 3.52 a 3.00 p 1.00 166. 166. 166	Tb 150 5.8 m 3.67 h 1 600; 8.7 h 1 600; 8.7 h 1 600; 8.7 h 1 600; 8.3 d 1 600, 600, 600	Tb 151 25 s 17.6 h 40; 42; 4241 1,40; 426; 426; 426; 426; 426; 426; 426; 426	Tb 152 4.2 m 17.5 h 17.303 17.2 h 17.304 17.2 h 17.304 17.2 h 17.304 18.0 h 18.304 18.0 h 18.304	Tb 153 2.34 d	Tb 154 23 h 8.0 h 211 4.1 4.1 547. 1923; 1224 1307. 846; 1224 1307. 640	Tb 155 5.32 d	Tb 156	Tb 157 99 a	Tb 158 10.5 s 100 s 10.5 s 100 s 10.5 s 100 s 10.5 s 100 s	Tb 159 100	Tb 160 72.3 d β=0.6:1.7 y879:299; 966 # 670	Tb 161 6.90 d β= 0.5; 0.6 γ 26; 49; 75
Gd 148 74,6 a α3.183 α14000	Gd 149 9.28 d 4; a 3.016 7 150; 299; 347	Gd 150 1.8 · 10 ⁸ a	Gd 151 120 d 4; a 260 7 154; 243; 175	Gd 152 0.20 1.1 · 10 ¹⁴ a α 2.14; υ 700 σ _{R, α} <0.007	Gd 153 239.47 d * 797; 103; 70 # 20000 #h, # 0.93	Gd 154 2.18	Gd 155 14.80 "61000 "6.000008	Gd 156 20.47 _{4~2.0}	Gd 157 15.65 17.254000 17.14 < 0.05	Gd 158 24.84	Gd 159 18.48 h β=1.0 γ384:58	Gd 160 21.86

Cancer therapy with beams

Different particles cause different damage

Cancer therapy with beams

- Protos and 'heavy' ions (> proton) are best:
 - Most energy deposited in limited space
 - More damage than other radiation

GREATEST HITS

Radiation can kill cancer cells by damaging their DNA. X-rays can hit or miss. Protons are slightly more lethal to cancer cells than X-rays. Carbon ions are around 2–3 times as damaging as X-rays.

Therapy and control at once

- New idea: implant PET isotope together with treatment beam:
 - ➤ 12C and PET nucleus together
 - > Even newer: 11C for simultaneous PET and therapy at once

Summary

- Radioactive nuclei and particle detectors can be used in very sensitive:
 - Medical diagnosis
 - > Treatment of cancer
- Particle beams can be used also in treatment of cancer

common

Radionuclide	T 1/2	E _{max} in MeV	Production route	R/A/D *	
32 _P		1.7 b-	31P(n, g)	R	
			32S(n, p)	R,A	
89 _{Sr}	50.5 d	1.5 b-	89Y(n, p)	R,A	
			88Sr(n, g)	R	
$90_{ m Y}$	2.7 d	2.3 b ⁻	90Zr(n, p)	R,A	
			89Y(n, g)	R	
			235U(n, f) FP ⁹⁰ Sr ®	R	
			⁹⁰ Y generator		
103 _{Pd}	17.0 d	Auger electrons, x-rays	¹⁰² Pd(n, g)	R	
		,	103Rh(p, n)	A	
			103Rh(d, 2n)	A	
			104Pd(g,n)	A	
125 _I	60.0 d	Auger electrons	124Xe(n,g) ¹²⁵ Xe ® ¹²⁵ I generator	R	
131 _I	8.0 d	0.6 b ⁻	130 _{Te(n,g) ® 131Te ®131_I}	R	
			235 _{U(n, f)} FP	R	
137 _{Cs}	30.97 y	0.5 b ⁻	235 _{U(n, f)} FP	R	
153_{Sm}	1.9 d	0.8 b ⁻	152 _{Sm(n,g)}	R	
186 _{Re}	17.0 h	1.1 b ⁻	185 _{Re(n,g)}	R	
			186W(p, n), 186W(d, 2n)	A	
			186W(n,g) ®		
¹⁸⁸ Re	17.0 h	2.0 b ⁻	187W(n, g) ¹⁸⁸ W ®	R	
			¹⁸⁸ Re generator		
			187Re(n,g)	R	
192 _{Ir}	73.8 d	0.7 b⁻	191 _{Ir(n,g)}	R	
			192 _{Os(p, n)} 192 _{Ir}	A	
			192Os(d, 2n) ¹⁹² Ir	A	

Less common

Radionuclide	T 1/2	E _{max} in MeV	Production route	R/A/Decay *	
⁶⁴ Cu	12.7 h	0.6 b ⁻	63Cu(n, g)	R	
		0.7 b ⁺	64Ni(p, n)	Α	
			⁶⁴ Ni(d, 2n)	Α	
			64Zn(n, p)	R	•
			64Zn(d, x)	Α	
67 _{Cu}	2.6 d	0.6 b ⁻	67 _{Zn(n, p)}	R	
			⁶⁸ Zn(p, 2p)	Α	
			⁷⁰ Zn(p, a)	Α	
67 _{Ga}	3.2 d	Auger electrons	⁶⁸ Zn(p,2n)	Α	
			67 _{Zn(p,n)}	Α	
86 _Y	14.74 h	b ⁺	86Sr(p, n)	Α	
¹⁰⁵ Rh	35.4 h	b⁻	104 _{Ru(n,g)} 105 _{Ru} ® 105 _{Rh}	R	
111 _{ln}	2.8 d	Auger electrons	111 _{Cd} (p, n)	Α	
			¹¹¹ Cd(p, 2n)	Α	
114m _{ln}	2.8 d	Auger electrons	114Cd (p, n)	Α	
			114Cd(d, 2n)	Α	
			¹¹⁶ Cd(p, 3n)	Α	
124	4.2 d	2.1 b ⁺	124Te(p, n)	Α	
			¹²⁴ Te(d, 2n)	Α	
			¹²⁵ Te(p, 2n)	Α	
149 _{Pm}	2.12 d	b⁻	148Nd(n, g) ¹⁴⁹ Nd ® ¹⁴⁹ Pm	R	
166 _{Ho}	26.8 h	1.9 b⁻	¹⁶⁵ Ho(n, g)	R	
			164Dy(n, g) ® 165Dy(n, g)		
			® 100	R	
400			166 _{Dy ®} 166 _{Ho}	_	
169 _{Yb}	32.0 d	Auger electrons	168Yb(n, g)	R	
			169 _{Tm(p, n)}	Α	
177 _{Lu}	6.7 d	0.5 b⁻	176 _{Lu(n, g)}	R	
			176Yb(n, g)177Yb ® 177Lu		
211 _{At}	7.2 h	5.9 a	209 _{Bi(a, 2n)}	Α	
213 _{Bi}	45.6 m	8.4 a	Decay of ²²⁵ Ac	D	
225 _{Ac}	10.0 d	5.8 a	226 _{Ra(p, 2n)}	Α	
			decay of ²³³ U ® ²²⁹ Th	R,D	