Particles and radioactive nuclei in medicine Magdalena Kowalska UNIGE, DPNC Magdalena.kowalska@unige.ch www.cern.ch/isolde ## **Outline** - Sensitive medical diagnosis with - > Radioactive nuclei - > Particle detectors - Selective cancer treatment with - ➤ Radioactive nuclei - Accelerated particles = hadron therapy # Medical diagnosis - Use sensitivity of particle and radiation detection - Diagnosis with radioactive nuclei: - Radioactive nucleus usually connected chemically to a biological 'ligand' - 'ligand' finds areas to be diagnosed: sugars go to cells that need energy, e.g cancer - > Emitted radiation shows the localisation of the interesting region - > Efficient particle detectors detect very low unharmful nM or pM concentrations - Suitable isotopes: - Isotope of element that can bind to biological ligands - Lifetime long enough for delivery and short enough for a body: hours to days - Right type of radiation and its energy - Detection: radiation not particles, because it gets stopped less in the body - Gamma rays from decay or annihilation of emitted beta+ particle - Approaches (nuclear medicine): - ➢ PET - SPECT # **PET: Positron emission tomography** - Signal from beta+ (positron) emitting nuclei - Emitted positron stops after travel of some mm in tissue - Positron = antimatter, so it annihilates with an electron from a neighbouring molecule (E=mc2) - 2 gamma rays of 511keV are emitted at 180 degrees - Detection: - Based on time and position of hits in detectors, place of annihilation is identified #### PET Some of 1st PET isotopes in the world were produced at ISOLDE and later investigated together with the creators of the PET technique at the Geneva Hospital Strengths: 5 - Extremely sensitive - Relative weaknesses: - ➤ Time resolution of detectors crucial -> can pinpoint annihilation location better - Coincidence between 2 gammas: relatively complex machine and event reconstruction - Positron can travel several mm before annihilating: limit in resolution # SPECT: Single photon emission computed tomography - Signal from gamma-emitting nucleus - > Direct gamma emission from nuclear isomeric state - Gamma emission following beta decay - Detection: - Collimated gamma detectors determining direction from which came gammas - > 3D image reconstructed based on number of counts behind each collimator ## **SPECT** - Isotopes: - > Relevant t1/2 - > Emission of easily detectable gamma rays - Strengths: - ➤ Less complex than PET - > Still rather sensitive - Relative weaknesses: - Less sensitive than PET (collimation) # **Detectors for medical diagnosis** #### New 511-keV **PET detectors** from fundamental research: - Detectors with ns and ps time resolution better localisation: - As in ATLAS tracer: monolytic Si detector TT-PET project, Uni Geneva - Fast scintillating crystals from CMS: CrystalClear at CERN - > As in nuclear fast timing: U Complutense Madrid - Cheaper materials: - Organic scintillators: J-PET in Krakow #### More sensitive **x-ray detectors**: MEDIPIX segmented detector from CERN #### Cancer treatment with radionuclei - Treatment via cell (mostly DNA) damage: - ➤ High dose beta radiation - Alpha radiation: heavier, so shorter range but higher lethality - Isotope delivery to cancer as in diagnosis: connection to ligand - Isotope: - Suitable half-life - Alpha emission # New medical isotopes ## **Theranostics** - Theranostics = therapy and diagnostics together - ➤ One isotope does diagnosis - ➤ Another isotope of the same element: treatment - At ISOLDE and Medicis | Dy 150
7.2 m
4; β ⁺
α 4.23
γ 387 | Dy 151
17 m
4: a 4.07
7,386; 49:
546; 176
a: m | Dy 152
2.4 h | Dy 153
6.29 h
4; β ⁴
α 3.46
γ 81; 214;
100; 254 | Dy 154
3.0 - 10 ⁶ a | Dy 155
10.0 h | Dy 156
0.056 | Dy 157
8.1 h | Dy 158
0.095 | Dy 159
144.4 d | Dy 160
2.329 | Dy 161
18.889
#600
#a.e <1E-6 | Dy 162
25.475 | |---|---|--|--|---|---|------------------|--|-------------------------------------|--|-----------------|--|---| | Tb 149 42 m 4.1 h 5 - 3.52 a 3.00 p 1.00 166. 166. 166 | Tb 150
5.8 m 3.67 h
1 600; 8.7 h
1 600; 8.7 h
1 600; 8.7 h
1 600; 8.3 d
1 600, 600, 600 | Tb 151 25 s 17.6 h 40; 42; 4241 1,40; 426; 426; 426; 426; 426; 426; 426; 426 | Tb 152 4.2 m 17.5 h 17.303 17.2 h 17.304 17.2 h 17.304 17.2 h 17.304 18.0 18.304 | Tb 153
2.34 d | Tb 154 23 h 8.0 h 211 4.1 4.1 547. 1923; 1224 1307. 846; 1224 1307. 640 | Tb 155
5.32 d | Tb 156 | Tb 157
99 a | Tb 158
10.5 s 100 s
10.5 s 100 s
10.5 s 100 s
10.5 s 100 s | Tb 159
100 | Tb 160
72.3 d
β=0.6:1.7
y879:299;
966
670 | Tb 161
6.90 d
β= 0.5; 0.6
γ 26; 49; 75 | | Gd 148
74,6 a
α3.183
α14000 | Gd 149
9.28 d
4; a 3.016
7 150; 299;
347 | Gd 150
1.8 · 10 ⁸ a | Gd 151
120 d
4; a 260
7 154; 243;
175 | Gd 152
0.20
1.1 · 10 ¹⁴ a
α 2.14; υ 700
σ _{R, α} <0.007 | Gd 153
239.47 d
* 797; 103; 70
20000
#h, # 0.93 | Gd 154
2.18 | Gd 155
14.80
"61000
"6.000008 | Gd 156
20.47
_{4~2.0} | Gd 157
15.65
17.254000
17.14 < 0.05 | Gd 158
24.84 | Gd 159
18.48 h
β=1.0
γ384:58 | Gd 160
21.86 | # Cancer therapy with beams Different particles cause different damage # Cancer therapy with beams - Protos and 'heavy' ions (> proton) are best: - Most energy deposited in limited space - More damage than other radiation #### GREATEST HITS Radiation can kill cancer cells by damaging their DNA. X-rays can hit or miss. Protons are slightly more lethal to cancer cells than X-rays. Carbon ions are around 2–3 times as damaging as X-rays. # Therapy and control at once - New idea: implant PET isotope together with treatment beam: - ➤ 12C and PET nucleus together - > Even newer: 11C for simultaneous PET and therapy at once # Summary - Radioactive nuclei and particle detectors can be used in very sensitive: - Medical diagnosis - > Treatment of cancer - Particle beams can be used also in treatment of cancer #### common | Radionuclide | T 1/2 | E _{max} in MeV | Production route | R/A/D * | | |---------------------|---------|----------------------------|--|---------|--| | 32 _P | | 1.7 b- | 31P(n, g) | R | | | | | | 32S(n, p) | R,A | | | 89 _{Sr} | 50.5 d | 1.5 b- | 89Y(n, p) | R,A | | | | | | 88Sr(n, g) | R | | | $90_{ m Y}$ | 2.7 d | 2.3 b ⁻ | 90Zr(n, p) | R,A | | | | | | 89Y(n, g) | R | | | | | | 235U(n, f) FP ⁹⁰ Sr ® | R | | | | | | ⁹⁰ Y generator | | | | 103 _{Pd} | 17.0 d | Auger electrons,
x-rays | ¹⁰² Pd(n, g) | R | | | | | , | 103Rh(p, n) | A | | | | | | 103Rh(d, 2n) | A | | | | | | 104Pd(g,n) | A | | | 125 _I | 60.0 d | Auger electrons | 124Xe(n,g) ¹²⁵ Xe ® ¹²⁵ I
generator | R | | | 131 _I | 8.0 d | 0.6 b ⁻ | 130 _{Te(n,g) ® 131Te
®131_I} | R | | | | | | 235 _{U(n, f)} FP | R | | | 137 _{Cs} | 30.97 y | 0.5 b ⁻ | 235 _{U(n, f)} FP | R | | | 153_{Sm} | 1.9 d | 0.8 b ⁻ | 152 _{Sm(n,g)} | R | | | 186 _{Re} | 17.0 h | 1.1 b ⁻ | 185 _{Re(n,g)} | R | | | | | | 186W(p, n), 186W(d, 2n) | A | | | | | | 186W(n,g) ® | | | | ¹⁸⁸ Re | 17.0 h | 2.0 b ⁻ | 187W(n, g) ¹⁸⁸ W ® | R | | | | | | ¹⁸⁸ Re generator | | | | | | | 187Re(n,g) | R | | | 192 _{Ir} | 73.8 d | 0.7 b⁻ | 191 _{Ir(n,g)} | R | | | | | | 192 _{Os(p, n)} 192 _{Ir} | A | | | | | | 192Os(d, 2n) ¹⁹² Ir | A | | # Less common | Radionuclide | T 1/2 | E _{max} in MeV | Production route | R/A/Decay * | | |--------------------|---------|-------------------------|--|-------------|---| | ⁶⁴ Cu | 12.7 h | 0.6 b ⁻ | 63Cu(n, g) | R | | | | | 0.7 b ⁺ | 64Ni(p, n) | Α | | | | | | ⁶⁴ Ni(d, 2n) | Α | | | | | | 64Zn(n, p) | R | • | | | | | 64Zn(d, x) | Α | | | 67 _{Cu} | 2.6 d | 0.6 b ⁻ | 67 _{Zn(n, p)} | R | | | | | | ⁶⁸ Zn(p, 2p) | Α | | | | | | ⁷⁰ Zn(p, a) | Α | | | 67 _{Ga} | 3.2 d | Auger electrons | ⁶⁸ Zn(p,2n) | Α | | | | | | 67 _{Zn(p,n)} | Α | | | 86 _Y | 14.74 h | b ⁺ | 86Sr(p, n) | Α | | | ¹⁰⁵ Rh | 35.4 h | b⁻ | 104 _{Ru(n,g)} 105 _{Ru} ® 105 _{Rh} | R | | | 111 _{ln} | 2.8 d | Auger electrons | 111 _{Cd} (p, n) | Α | | | | | | ¹¹¹ Cd(p, 2n) | Α | | | 114m _{ln} | 2.8 d | Auger electrons | 114Cd (p, n) | Α | | | | | | 114Cd(d, 2n) | Α | | | | | | ¹¹⁶ Cd(p, 3n) | Α | | | 124 | 4.2 d | 2.1 b ⁺ | 124Te(p, n) | Α | | | | | | ¹²⁴ Te(d, 2n) | Α | | | | | | ¹²⁵ Te(p, 2n) | Α | | | 149 _{Pm} | 2.12 d | b⁻ | 148Nd(n, g) ¹⁴⁹ Nd ® ¹⁴⁹ Pm | R | | | 166 _{Ho} | 26.8 h | 1.9 b⁻ | ¹⁶⁵ Ho(n, g) | R | | | | | | 164Dy(n, g) ® 165Dy(n, g) | | | | | | | ® 100 | R | | | 400 | | | 166 _{Dy ®} 166 _{Ho} | _ | | | 169 _{Yb} | 32.0 d | Auger electrons | 168Yb(n, g) | R | | | | | | 169 _{Tm(p, n)} | Α | | | 177 _{Lu} | 6.7 d | 0.5 b⁻ | 176 _{Lu(n, g)} | R | | | | | | 176Yb(n, g)177Yb ® 177Lu | | | | 211 _{At} | 7.2 h | 5.9 a | 209 _{Bi(a, 2n)} | Α | | | 213 _{Bi} | 45.6 m | 8.4 a | Decay of ²²⁵ Ac | D | | | 225 _{Ac} | 10.0 d | 5.8 a | 226 _{Ra(p, 2n)} | Α | | | | | | decay of ²³³ U ® ²²⁹ Th | R,D | |