Testing of the other AS Adjustment Stand Prototype

CLIC Module working group
22nd of May, 2019
Jukka Väinölä
Helsinki Institute of Physics/Cern BE-RF-MK
Matthew Capstick
Cern, BE-RF-MK

Testing of the other Prototype

- Measuring and charecterisation of the adjustability of the other adjustment stand prototype carried out by myself and Jukka last week
- Measurements performed with Mitytoyo dial indicator with arm in 169 lab
- Limited to measuring 1 axis at a time

Testing Methodology

1. Each axis is positioned at the nominal centre
2. The $D T I$ is placed directly about the driving flexure
3. The nut is turned until a displacement of $350 \mu \mathrm{~m}$ is measured
4. The nut is then turned back $0.5,1$, and 2 turns, and the displacement at each is recorded
5. The allows a measure of the 'backlash' to be recorded, as well as the freemovement performance
6. The whole process is repeated at:
7. $+350 \mu \mathrm{~m},+500 \mu \mathrm{~m},+$ EOT (moving in one direction)
8. $+350 \mu \mathrm{~m},+500 \mu \mathrm{~m}, 0,-350 \mu \mathrm{~m},-500 \mu \mathrm{~m},-$ EOT (returning in the other direction)
9. $-350 \mu \mathrm{~m},-500 \mu \mathrm{~m}, 0$ (returning in the original direction)

Example Data: Lateral Axis

The relative position of the lateral axis after a given number of turns

Averaged Data: Lateral Axis

The average relative position of the lateral axis after a given number of turns

Averaged Data: Lateral Axis (Backlash)

The average relative position of the lateral axis after a given number of turns

Measure of 'Backlash'

- Average backlash across all axes: $16 \mu \mathrm{~m}$
- Maximum backlash (vertical axis 3): $43.5 \mu \mathrm{~m}$

Measure of 'Backlash'

- Average backlash across all axes: $16 \mu \mathrm{~m}$
- Maximum backlash (vertical axis 3): $43.5 \mu \mathrm{~m}$
- Required counting revolutions (imprecise)
- On both of the lateral axes we were required to adjust the spring force
- On one of the vertical axes we were required to 'assist' the AS in returning

Performance

The average relative position of the lateral axis after a given number of turns

Performance

The average relative position of the lateral axis after a given number of turns

Per-axis Average Performance

- Lateral 1: $89 \mu \mathrm{~m} / \mathrm{rev}-98 \mu \mathrm{~m} / \mathrm{rev}$
- Lateral 1: $83 \mu \mathrm{~m} / \mathrm{rev}-92 \mu \mathrm{~m} / \mathrm{rev}$
- Longitudinal: $72 \mu \mathrm{~m} / \mathrm{rev}-88 \mu \mathrm{~m} / \mathrm{rev}$
- Vertical 1: $87 \mu \mathrm{~m} / \mathrm{rev}-92 \mu \mathrm{~m} / \mathrm{rev}$
- Vertical 2: $95 \mu \mathrm{~m} / \mathrm{rev}-\mathbf{1 0 9 \mu m} / \mathrm{rev}$
- Vertical 3: $94 \mu \mathrm{~m} / \mathrm{rev}-97 \mu \mathrm{~m} / \mathrm{rev}$

Performance Against Position in Travel

Summary/Comparison to other Prototype

- Longitudinal axis does not appear to be limited in range
- Suggests manufacturing differences caused this limit in the other prototype
- Performance in consistent within and between all the axes to the degree which we would control
- Methodology required counting revolutions, inevitably adding errors
- Measured by the DTI we could position each axis to within $1 \mu \mathrm{~m}$
- Measuring individual axes separately

Summary/Comparison to other Prototype

- Inconstancies with the movement in both the lateral axes:
- Movement was smooth and controllable during the translation (while a torque was being applied)
- When at the end of the movement (when the torque was removed) there would be a noticeable 'spring-back' in the position
- The happened regardless of the direction of travel, and regardless of the previous revolutions (not backlash)
- We were able to 'over-correct' and achieve the required positioning that way
- Possibly down to the differences in manufacture for the threaded rods used in this axis

