Highlights from the 9th LHC Operations Evian Workshop (January 30th to February 1st, 2019)

C. Wiesner, M. Mentik, D. Wollmann

February, 28th 2019

9th LHC Operations Evian Workshop

Five Sessions:

- 1. Overview of Run 2
- 2. Systems Overview
- 3. Systems Overview (with some beam dynamics)
- 4. Beam Performance during Run 2
- 5. A Preliminary Look Ahead

33 Presentations accumulating to 11 hours 6 hours of discussions

Personal, not complete, summary focusing on machine-protection relevant questions

Slides for all presentations (and proceedings/minutes) can be found at: https://indico.cern.ch/event/751857/timetable/#20190130.detailed

The LHC Beam Dump System

Run II Performance

MKD/MKB Erratic/Flashover with beam at top energy

- A few kicker failures per year (erratics and flashover)
 occurred and will continue to occur, especially when operating at higher energy (higher voltage)
- Weaknesses and new kicker failure types (type 2 MKD erratic, ~3 "missing" MKBs) were identified during past Runs
 → impact on beam load for dump protection elements and TDE

From C. Bracco, LBDS Performance in Run II

LHC Dump Layout

Interferometer measurements

Large displacements measured

0.30

Upstream Window under 1.8E+11 ppb

Radiation levels in RRs in P1 & P5 dependency on TCL6 settings

Reduction of **~4x** for **IP1** & **~2x** for **IP5** in 2018 vs. 2017 but increase in P7 due to betatron losses. The ARC rad-levels increased due to open TCL6 impacting MPE equipment in DS (increase in cell8). From the R2E perspective: preferable **post-LS2** configuration will be TCL6 closed, owing to radiation hardness of RR EPC equipment.

> OP question: Replace more Power Converters affected by zero-volt crossing?

QPS Hardware

13800 hardwired means to stop LHC

Item	Count
EE13kA	32
EE600	202
HDS	6084
QDSRB	1232
Magnet detector	2464
QDSRQ	392
Magnet detector	1568
nQPS	436
Magnet detector	1632
Bus-bar detector	4096
QDSIPX	76
IP magnet detector	360
IT magnet detector	48
Current lead detector	1124
QDS600	114
Magnet detector	624
Rad-tol magnet det.	212
Current lead detector	1672
Total	8568
Interlocking	13800

T. Podzorny, Quench Protection System

QPS availability

- Overall, excellent availability of QPS
- TCL collimator settings in 2018 significantly affected QPS downtime

Comment Rende: "Before LS1 everybody was impressed about the number of faults now we are all impressed by the excellent availability"

From T. Podzorny, Quench Protection System

Collimation

0

0 00

18-11-02

N. Fuster-Martínez, Collimation

Collimation

Collimator Alignment

Crystal Collimation

From N. Fuster-Martínez, Collimation

Machine Protection System

Re-cap Run 2

No damage to machine equipment or experiments due to beam No damage to circuits due to powering failures or quenches

Have we been running safely?

LHC machine **protection systems worked well** avoiding damage in accelerator equipment and circuits, **but** we have experienced:

- Wrong parameters in protection systems
- Interlocks not acting as expected
- Operational mistakes
- Running with unvalidated machine configurations
- Software commissioning with hundreds of circulating bunches
- Unvalidated coupling knobs with strong impact in beta*
- Undetected quench heater firing
- Masking of critical interlocks during hardware commissioning
- Procedures not followed

Due to the **diverse redundancy** in the machine protection systems and **vigilant** hardware experts, MP experts & OP teams **no damage happened** in Run 2!

Fortune favours the brave?!

For most cases we lost only 1 protection layer

We should become more rigorous and in the future for each such case produce a "major event report"

Intensity ramp-ups Run 2

- 2015: commissioning year
 - 50 ns & 25 ns ramp-up
 - Increase of intensity until end of proton run
- 2016/17/18: 7 steps to reach 2000+ bunches
 - 3/12 75 300 600 900 1200 **-** 1800
 - 2016 \rightarrow 2018: reduction ramp-up length by 35 %

Establish cycle MP dominated

Intensity dominated

Machine Configuration

R. Bruce

Comparison: 2018 vs LHC design

- Some keys to good peak performance:
 - Small emittance
 - See talks H.
 Bartosik, S.
 Papadopoulou
 - Small β* at collision point
 - Focus of this talk

Parameter	2018	LHC Design
Energy [TeV]	6.5	7.0
No. of bunches	2556	2808
Max. stored energy per beam (MJ)	312	362
β* IR1/5 [cm]	30→25	55
Half crossing angle IR1/5 [µrad]	160→130	142.5
Normalized beam-beam separation	10.6→7.9	9.4
p/bunch (typical value) [1011]	1.1	1.15
Typical normalized emittance [µm]	~1.9	3.75
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.1	1.0

Machine Configuration

positive IR1 crossing

For visibility, including only starting configuration

Transverse Emittance Blow-up

Emittance growth studies well advanced as simulations and calculations can be compared to measurements. **No measurement available for the ramp**

For both FB and FT energies, the observed **extra emittance growth (on top of the model):**

-is similar for both beams, larger in the vertical compared to the horizontal plane -at FB, e-cloud explains almost 50% of the observed extra growth. Impact of e-cloud to the observed extra growth at SB to be studied -the "unknown" extra emittance growth at FB is 0.2 μ m/h in horizontal and 0.4 μ m/h in vertical. Ongoing studies to correlate this extra growth with noise, which also predicts more growth in vertical at SB (see appendix) -no clear correlation with brightness (see appendix)

Special Losses (UFO – ULO – 16L2 – 10 Hz)

What about the deconditioning and level of UFOs in 2021 ?

10 Hz: origins of phase shift identified, but real cause not yet !!!

• Heat loads in **S12, S23, S81** much larger than for the other sectors

 \rightarrow close to cryo-plant design capacity

 These differences are very reproducible and were observed in all 25 ns fills over 4 years (2015-18)

Heat loads: distribution along the ring

- Especially in the high load sectors, we observe large differences from cell to cell
- Heat loads can be different for the two apertures of the same cell
- Differences are present even among magnets of the same cell

Cell 31L2 (equipped with extra thermometers)At 450 GeV:25 W20 W50 W3 WQDipoleDipoleDipoleDipoleAt 6.5 TeV:5 W30 W70 W8 W

G. ladarola, Electron clouds and heat loads

MDs per category [hours]

MDs on schedule for 2015,2016,2017,2018

- Collimation wins lots of new hardware in prep for HL
- Followed by collective instabilities, lumi and lifetime, ...

What to expect from the injectors during Run 3

- LIU project in its final phase
 - LIU equipment installation, IST, HW commissioning during LS2
 - Expected LIU beam parameters match HL-LHC request with present baseline
 - Proton beams can be also produced in different flavors (BCMS, 8b4e)
 - Pb ion beams rely on momentum slip stacking in SPS and mitigation scenario with 75 ns bunch spacing has been demonstrated to potentially provide ~70% of target lumi
- LIU beam commissioning during Run 3: Ramp up strategy in place

What will the LHC and Experiments be able to swallow during run 3?

9th LHC Operations Workshop Evian 30 Jan. - 1 Feb. 2019 BCMS

HL-LHC

request

3.0

2.5

Points from 2018 operation

0.5

1.0

1.5

Intensity at 450 GeV [p/b]

2.0

2.5

3.0

1e11

Emittance at 450 GeV [um] 0.1 1.2

0.5

Beam Energy in Run-3

- Highest possible energy favored by ATLAS/CMS as it increases reach of their new physics search program
 - Also worth going to 13.5 TeV if implies much shorter training
 - Experiments would like to know target well in advance
 - If needed, can increase energy in 2022, but not 2023
 - Beam energy not critical for LHCb, but prefer same energy throughout Run-3 (at least 2022-23) for sample uniformity

Deliverables & Equipment Group Constraints

 Very clear forecast from LIU for the commissioning plan: Gradual intensity ramp up over Run-III. 					
		2021	2022	2023*	Comment
	# bunches	Up to 2748 (BCMS)			
	$\epsilon_n [\mu m]$	1.3	1.3	1.3 → 1.55	Intensity Ramp Up
	$N_b \ [10^{11} \mathrm{p}]$	0 →1.4	1.4 →1.8	1.8 → 2.1	Max intensity at the end of each year

* Not including 2024 when the LHC is in shutdown but the injectors are fully operational.

At the LHC, can we inject, accelerate, collide and safely dump such a beam?

System	1./e11	1.8611	Comment	
MKI	ОК	OK	One new MKI prototype to be installed in $2022/2023$ in IR8. 1.8×10^{11} ppb should be within reach with 1.3ns \rightarrow Studies are on-going for 1.2	
RF	OK	OK	Klystron power limitation at INJ: 1.8×10^{11} ppb \rightarrow out of reach with Q22, ok for Q20 with >1.2ns in RAMP.	
Alignment	NA	NA	Vertical realignment of LSS5 (Q10-Q10) by up to -3 mm	
Cryogenics	OK	OK	Total heat load measured at $306W \rightarrow L_{peak} = 2.05 \times 10^{34} \text{ Hz/cm}^2$ at 7.0 TeV. Impact of running the triplet at the cryo limit is marginal (<2%) on the cooling capacity of the beam screen in the adjacent arcs.	N. Karastathis, Report from the LHC Run-III Configuration Working Group
CERN			M. Barnes, K. Brodzinski, B. Goddard, A	. Lechner, J. Maestre

28/02/2019 - 9th Evian Workshop

M. Barnes, K. Brodzinski, B. Goddard, A. Lechner, J. Maestr Heredia, A. Mereghetti, D. Missiaen, F.X. Nuiri, B. Salvant, H. Timko, J. Uythoven, J. Wenninger, *et al.*

Deliverables & Equipment Group Constraints

Very clear forecast from LIU for the commissioning plan:
Gradual intensity ramp up over Run-III.

	2021	2022	2023*	Comment
# bunches	Up to 2748 (BCMS)		MS)	
$\epsilon_n [\mu m]$	1.3	1.3	1.3 → 1.55	Intensity Ramp Up
$N_b \ [10^{11} p]$	0 →1.4	1.4 →1.8	1.8 → 2.1	Max intensity at the end of each year

* Not including 2024 when the LHC is in shutdown but the injectors are fully operational.

At the LHC, can we inject, accelerate, collide and safely dump such a beam?

System	1.7e11	1.8e11	Comment		
TCDQ	OK	OK	For 2.5mm gap and $N_b = 1.7 \times 10^{11}$ ppb safety factor up to 2.5. Studies on-going for other gap values (2.0mm). TCDQ leveling MD successful!	The LHC should be	
TCDS	ОК	5	Already designed for $N_b = 1.7 \times 10^{11}$ ppb, but in plastic deformation already \rightarrow Studies on-going.	available to accept a	
TDE	?	?	New downstream window installed in LS2. Not sufficient margin for the upstream window → YETS 2021/2022. Material re-characterization needed for the body at 2500°C . Study on-going.	of $N_b = 1.8 \times 10^{11} \text{ppb}$ Especially, after the TDE	
Collimation	OK	OK	No issue on finding suitable settings for Run-III (with the help of partial upgrade in Run-III and thanks to dedicated telescopic optics).	downstream window upgrade. N. Karastathis, Report from the LHC Run-III Configuratior	

Working Group

M. Barnes, K. Brodzinski, B. Goddard, A. Lechner, J. Maestre Heredia, A. Mereghetti, D. Missiaen, F.X. Nuiri, B. Salvant, H. Timko, J. Uythoven, J. Wenninger, *et al.*

evian.

Thank you for your attention!

1.

Et bon appetit !

WWW. PHDCOMICS. COM

The Cafeteria Potential Well

Why you end up eating there almost every day.

Power Converters and their control

Massive FGClite deployment during LS2 Lessons learned and experience gained

ADT and ObsBox

- As well as normal operation, 15 MDs in the last 2 years relied on the ADT and ObsBox
- ObsBox is instrumental for instability studies
- Changes during LS2:

ADT re-commissioning strategy

- New, never before operated beam position modules
- A major upgrade of the high level control
- · New way the functions will be generated
- New applications and user interfaces
- After LS2, the ADT will be considered *"as new"* therefore a much longer commissioning time will be needed
 - A typical time required in Run II: 2-3 shifts
 - A 10dB increase, plus a couple of ramps is a reasonable estimate

"Any specific new requirements have to be communicated now"

Luminosity, lifetime and modelling

Luminosity, lifetime and modelling

Conclusions

<u>Squeeze</u>

- Reduction of lifetime below β* 40cm.
- Bunch-by-bunch losses revealed LR and e-cloud patterns, mostly affecting B1 (e-cloud in the triplet?).
- Tune optimization can mitigated mostly LR losses and improved lifetime.

Stable Beams

- Lifetime of B1 systematically lower than B2 during Run II
- Extra losses observed in the first few hours during the whole run II (not yet understood).
- During 2018 additional losses observed induced by crossing angle antileveling and β* levelling, e-cloud related
- E-cloud important mechanism of beam lifetime degradation with BCMS beams (and B1 vs B2 difference).
- > DA well correlated with lifetime, but model misses important ingredients (imperfections, noise, e-cloud).

Transverse Instabilities

- **Diffusion models**
 - Effect of noise spectrum (e.g. 50 Hz noise lines)
 - **Optimal damper settings** (gain, bandwidth) and machine/beam parameters

Vertical tune shift induced by TCSG.D4L7.B1

→ Strongly constrained by measurements of

- Single collimator tune shifts
- Instability threshold
- Head-tail signals
- Rise time vs. chromaticity
- Interplay between the ADT and Landau damping (validity of the uncoupled-mode approximation)
- Weak electron cloud instabilities

Longitudinal dynamics

Further improvement of quality and performance

• Power limitations at injection: dynamic circulator adjustment, improved calibration schemes, understand line-by-line differences and define appropriate operational margins

Damping of energy errors: longitudinal damper using ACS

- Blow-up: divergence, PPLP ramp, and alternative methods
- Firmware modifications expected (2020-2023):
 - Alternative beam-loading compensation schemes during injection
 - Alternative emittance blow-up
 - Cavity detuning before the first batch injection
 - Longitudinal damper; potentially first commissioning/MDs in 2021
 - Modification of digital feedback (for larger detuning)

Energy error at injection: tomographic reconstruction (2018)

