

Management of Material Properties for Superconducting Magnet

Youssef Raouyane

6/6/2019

Introduction

- 1. There are numerous material properties used in superconducting magnet modelling
- 2. The goal of this work is to summarize existing material properties in C
- 3. The material properties in C are then compared with equivalent in MATLAB and available references
- 4. To this end, an automated testing routine was developed in Matlab
- 5. This would allow to link model with material property (very important for co-simulation)

Material Properties in C

Definition

A DLL is a library that contain compiled code and data that can be used by more than one program at the same time.

Advantages :

- DLLs can be used by multiple programs at the same time
- DLLs are much smaller (one copy of the file in the physical memory)
- Faster compilation time

Use case diagram

Include – user has to take an action Extend – user may take an action

C-function structure required by COMSOL

JavaScript Object Notation

- Structured and stored data
- Text based files and human readable

2	∃{	
3	81	"DLL Name": CFUN kKapton.dll"
4	8	"func name err": "CFUN CpKapton",
- 5		"nArgs":1,
6		"bad_args":2,
- 7	5	"v in":[{"first":[2,4.3,5,15,120,500]},
8		{"second":[]},
9	8	{"third":[]},
10		{"fifth":[]},
11	8	{"sixth":[]}
12	÷	1,
13	8	"blockSize":6,
14	8	"matlab_func":"kKapton",
15	8	<pre>"compilerAbsolutePath":"C:\\vcvars64.bat",</pre>
16	8	"MatlabLibraryAbsolutePath":"C:\\MatlabFunctions"
17	},	

Testing code

- Read the block corresponding to the DLL from the JSON file
- Load the DLL
- Check if it contains all the functions
- Call the library using invalid inputs to check if the error messages are caught
- Compare the output values with the output of the equivalent MATLAB function

How to load the DLL?

Loadlibrary (DLLNAME, HEADER)

DLLNAME as char **Header** name as char

full path or the name if we are in the same directory

Useful functions

• Libisloaded : verify if the DLL is loaded

<pre>>> libisloaded('lib')</pre>
ans =
<u>logical</u>
1

• Libfunctions: display the DLL functions

Command Window									\odot	
New to MATLAB? See resources for <u>Getting Started</u> .										
Γ	>> libfunc	tions('lib')								
	Functions in library lib:									
L	eval	evalMATLAB2	evalMATLAB3	evalMATLAB4	evalMATLAB5	evalMATLAB6	getLastError	init		
	f¥ >>									

Use the library (1/3)

Main function :

int eval(const char *func, int nArgs, const double **inReal, const double **inImag, int blockSize, double *outReal, double *outImag)

- Func : The name of the function
- nArgs : The number of arguments required

See: <u>https://espace.cern.ch/steam/_layouts/15/start.aspx#/SitePages/Material%20Properties.aspx</u>

Use the library (2/3)

Main function :

int eval(const char *func, int nArgs, const double **inReal, const double **inImag, int blockSize, double *outReal, double *outImag)

- InReal: Pointer of array that contain the evaluation points
- InImag : as Inreal for imaginary inputs
- blockSize : dim(InReal)
- outReal : Pointer of array for output values
- outImag: as outReal for imaginary values

See: <u>https://espace.cern.ch/steam/_layouts/15/start.aspx#/SitePages/Material%20Properties.aspx</u>

Youssef Raouyane

Use the library (3/3)

Command Window	\odot					
New to MATLAB? See resources for <u>Getting Started</u> .	×					
<pre>>> A=[-50.25,0,1,25.6,100,250.35,300,350.2]; >> inReal=libpointer('doublePtrPtr',A); >> v_out=zeros(1,8); >> outReal=libpointer('doublePtr',v_out); >> blockSize=8; >> func_name='CFUN_CpAg'; >> nArgs=1; >> inImag=libpointer('doublePtrPtr'); >> outImag=libpointer('doublePtr'); /fs >> </pre>						
Libpointer: Create a pointer of arrays						
Libpointer(`datatype', initialValue);						
Example :						

- >> A=[-50.25,0,1,25.6,100,250.35,300,350.2];
- >> inReal=libpointer('doublePtr',A);

inReal is a pointer to A, its type is doublePtr

Unload the library

Unloadlibrary (DLLNAME)

Documentation (1/2)

Collaboration Workspaces

BROWSE PA

Material Properties

Home													
User Pages	KAPTON	Property	C	MatLab	Inputs	Range(*)	Units	Reference					
COSIM SIGMA	1 (★★)	Thermal conductivity	CFUN_kKapton	 kKapton kKapton_mat	T in K (scalar / array)	[1,500K]Curve fit error: 2%	W/(K.m)	[1], p. 20					
SING LEDET	2	Specific heat	CFUN_CvKapton	 cpKapton_nist cpKapton_nist_mat 	T in K (scalar / array)	[4,300K]Curve fit error: 3%	J/(Km3)	[1], p. 20					
BBQ													
ProteCCT	G10	Property	C	MatLab	Inputs	Range	Units	Reference					
Discussion Board Gallery Publications Agreement	3	Thermal conductivity	CFUN_kG10	kG10_mat	T in K (scalar)	 [10,300K] for normal direction [12,300K] for parrallel direction Curve fit error: 5% 	W/(K.m)	[1] p. 23					
Contact us! Team Pages Documents	4	Specific Heat - NIST	CFUN_CvG10	 cpG10_nist cpG10_nist_mat_old cpG10_nist_mat 	T in K (scalar / array)	• [4,300K] • Curve fit error: 2%	J/(Km3)	[1] p. 24					
User list													
GitLab	COPPER	Property	C	MatLab	inputs	Range	Units	Reference					
Events Material Properties Naming Conventions	5	Thermal conductivity	CFUN_kCuWiedermann_OLD	kCu_WiedemannFranz	 T in K (scalar/array) B in T RRR 	[0,+∞)	W/(K.m)	[1], p. 9					
TE-MPE-PE Recent BBQ	6	Thermal conductivity	CFUN_kCuNIST	kCu_nist kCu_nist_mat	 T in K (scalar/array) B in T RRR 	[0,+co)	W/(K.m)	[1], p. 9					
Contact Us	7	Specific heat	CFUN_CvCuNIST	cpCu_nist cpCu_nist_mat	T in K (scalar / array)	[4,300K]	J/(Km3)	[1], p. 13					
Presentations	8	Specific heat	CFUN_CvCu		T in K	[0,+∞)	J/(Km3)	[1], p. 13					

- Web page in The STEAM Website: https://espace.cern.ch/steam/SitePages/Material%20Properties.aspx
- A Table that contain name of the functions in C & MATLAB, inputs required and the range of

validity

Documentation (2/2)

Use of Dynamic Link Libraries in Matlab & COMSOL

29/05/2019

Abstract

This document provides the reader with the essential knowledge about how to load dynamic link libraries in Mathab. To facilitate the comprehension understanding, there will be walkthroughs to give practical examples where a dynamic link library (DLL) will be compiled, loaded and tested in Mathab. Detailed description of how to compile, test & use the DLLs in both MATLAB and COMSOL

Author: Y.Raouyane

6/6/2019

Conclusion

- All available material properties were summarized and cross-checked
- Some differences between C and Matlab implementations were identified and will be clarified
- The automated testing framework is completed and can be extended by adding new material properties
- You can find a summary here: <u>https://espace.cern.ch/steam/_layouts/15/start.aspx#/SitePages/M</u> <u>aterial%20Properties.aspx</u>

