

Update on UFO Dynamics Studies

Simulations and Run 2 events analysis

P. Bélanger, B. Lindstrom, R. Schmidt, C. Wiesner, D. Wollmann

▲□▶ ▲ \emp ▶ \$\\$

July 11, 2019 - Update on UFO Dynamics Studies

A word on UFOs

From A. Lechner : "Update about (non-16L2) UFOs" (2018)

Why do we care?

- Beam dumps? Yes, 115 during Run 2
- Magnet quenches? Yes, 8 during Run 2
- Intensity drop? No, negligible during p-p physics (not an electron machine)

Data Collection

Instruments

- Beam Loss Monitors (BLM)
- Diamond BLMs (dBLM)

Databases

- UFO Buster :
 - Beam parameters
 - Triggers Capture Buffer : 80 μs resolution BLM signal
- Post-Mortem database : 40 μ s resolution BLM signal
- dBLM database : 1.6 ns resolution diamond BLMs signal

 $\bullet \Box \bullet \bullet \equiv \bullet \circ \circ \circ \circ$

Time profile examples

ly 11, 2019 - Update on UFO Dynamics Studies

Philippe Bélanger

Time profile examples - Measurements

	Source	Number of events
	UFO Buster	337,217
	Matching Capture Buffer	57,262
	ightarrow Filter 1 (SNR $>$ threshold)	32,137
Following slides:	ightarrow Filter 2 (min. 5 points signal)	3,035

▲□▶▲≣▶∽Q@

Measurements overview

Parameter		Min.	-	Max.
Maximum Losses	(Gy/s)	9.05×10^{-5}	-	3.16
Integrated Signal	(Gy)	2.90×10^{-8}	-	2.02×10^{-3}
Rise Time	(μs)	91	-	4241
Fall Time	(μs)	109	-	3876
Full length	(μs)	317	-	7118

▲□▶▲≣▶�\$<</p>

Normal UFOs v.s. Dump UFOs

Dump UFOs seem to have :

- Higher losses
- Longer rise time
- Shorter fall time

However, not a lot of statistics... In-depth analysis of the dump UFOs is still to be done.

▲□▶▲≣▶�Q@

Dynamics Simulation Tool

Tool developed (starting in 2010, F. Zimmermann, B. Auchmann *et al.*) to simulate UFO dynamics :

- 1. UFO begins to fall and/or be attracted toward the proton beam
- 2. UFO-beam interaction knocks-off electrons in the UFO (ionization) and lead to proton losses
- 3. The charged UFO is repelled by the beam

Simulations - Parameter scan

- Range of parameters is based on past studies:
 - FLUKA simulations (A. Lechner)
 - Dust collection in the beam pipe (L. Grob)

Parameter	Values		
UFO Charge	$0 - 10^8 \cdot (-e)$		
UFO Position	Top of beam screen		
UFO Radius	$1~\mu m-$ 50 μm		
UFO Material	Cu, Si, Al		
Beam Energy	6.5 TeV		
Beam Intensity	$3 imes 10^{10} - 3 imes 10^{14}$		
Beam σ_x	50 μ m $-$ 500 μ m		
Beam σ_y	50 μ m $-$ 500 μ m		

From L. Grob : "Dust Analysis From LHC Vacuum System to

Identify the Source of Macro Particle-Beam-Interactions" (2019)

SIZE DISTRIBUTION

□ > < ≡ > < < <
 ○ < <

Simulations - Results

Log-Log axis

- Expected "calibration" constant (BLM response to incoming particles)
- Can be calculated with FLUKA
- Scaled measurements move along the simulated line : compatible with the need for this BLM calibration

Regular axis

- Range of σ_y influences the thickness of the simulation band (left figure) and the slope (right figure)
- Coverage is compatible with measurements for same σ_γ range

< □ > < Ξ > <) < ()

Simulations - Beam size

Let's look at the ratio (Integrated signal)/(Peak Signal)

- Units of seconds
- Independent of the BLM calibration
- Equivalent to time spent in the beam by the UFO
- From previous slide : highly dependent on σ_y

- Since 2010, it is hypothesized that the fall of UFOs is not only driven by gravity
- We can verify this hypothesis by fixing Q = 0 (no UFO charge) and scanning through all the other parameters

UFO dynamics driven by gravity alone is incompatible with measurements!

• Next logical step : what is the minimum charge which allows to explain the measurements?

UFOs are generally charged with $|Q| > 1000 \cdot e \quad (-1.6 \times 10^{-16} \text{ C})$

▲□▶ ▲ ≧ ▶ 約 Q (P)

• With increasing UFO radius, more and more charges are needed to explain the measurements

UFOs with $r \ge 5 \ \mu m$ are generally charged with $|Q| > 10^6 \cdot e \quad (-1.6 \times 10^{-13} \text{ C})$

▲□▶ ▲ ≧ ▶ 約 Q @

• With increasing UFO radius, more and more charges are needed to explain the measurements

UFOs with $r \ge 22 \ \mu m$ are generally charged with $|Q| > 10^7 \cdot e \ (-1.6 \times 10^{-12} \text{ C})$

□ > < ∃ >

Conclusion

- For the first time, time profiles from the UFO Buster were investigated. Only 1% of the events contain appreciable signal on which we can make measurements.
- Studied UFO time profiles in a systematic way
 - First measurements of key parameters in UFO time profiles
 - First comparison between dump UFOs and UFO Buster UFOs
- Validation of the accepted UFO parameters against dynamics simulations.
- Studied the effect of the beam size on UFO time profiles.
- Showed that gravity alone can't explain Run 2 measurements.
- Established a lower bound of 10^6 electrons as the initial UFO charge for radius above 5 μ m in order to explain all measurements.
- Overall : gathered important statistics which could help understand release mechanism!

Outlook

- In-depth comparison of dump UFOs with UFO Buster events is needed in order to validate our understanding.
- Comparison of the UFO rate from confirmed UFO events against all UFO Buster triggers.
- Systematic categorization of UFOs into families is needed
 - Comparison of statistics from confirmed UFO events against all UFO Buster triggers
 - Comparison of known UFO types (16L2, ULO, MKI) against all other events
- Incorporating the BLM calibration factor from FLUKA simulations in the analysis is vital in order to solidify our understanding and come to new conclusions.
- Monte-Carlo simulations with appropriate distributions for the input parameters of the dynamics simulation is needed to further our understanding.

home.cern

Summary of work done

Since January 2019 :

- Literature review of previous UFO studies.
- Development of a more accurate description of the electric field around the LHC proton beam.
- Upgrade of the UFO Dynamics Simulation Tool
- Development of new methods of analysis for studying UFO bunch-by-bunch signals.
- Gathering of all available data from standard beam operation between 2015 and 2018. First look and direct conclusions.
- Started an in-depth analysis of the data mentioned above.

< □ > < Ξ > <) < ()

E-field around the LHC proton beam

 Original approximation considered the Houssais E-field in free space (i.e. no beam screen)

 A new method to solve Laplace's equation for complex boundary conditions was developed and allowed to find a more accurate description of the E-field

Bélanger, P. (2019). Generalizing the Method of Images for Complex Boundary Conditions : Application on the LHC Beam Screen.

https://arxiv.org/abs/1905.03405

uly 11, 2019 - Update on UFO Dynamics Studies

E-field around the LHC proton beam

Conclusion : ignoring the beam screen accounts for an error of 1% in the E-field at 1σ from the center of the beam and 10% at 30σ

The method developed can also be used for off-centered beam, at really low computing cost.

▲□▶▲≣▶∽Q@

