

Nb₃Sn RRP 108 Wire Beam Impact Damage Study

Presenting: Jonathan Schubert Supervisor: Andreas Will Daniel Wollmann

What I want to talk about

- A brief reminder of what we work on
- Simulation Workflow
- Results
- Summary

A brief reminder of what we work on

Beam Impact studies on Superconductor Strands at 4K

A brief reminder of what we work on

My work focused on: Nb₃Sn strand (HL-LHC) 50 mm, \emptyset 0.85 mm

A brief reminder of what we work on

Simulating the Impact

Energy Deposition

Generating a probabilistic Energy Deposition Map per Primary Particle

Scaling the Energy with the Beam Signature to get an on/off heating Rate

FLUKA Model

Thermal Evolution

Temperature Distribution in Sample Holder right after Beam Impact

Temperature Distribution in Detailed Strand right after Beam Impact

Allowed for quantitative results such as:

- Importance of placement in the Strandholder
- Strain induced bending of the Strands and their movement during the Reaction

Different Models

Maximum Detail Model:

- Fully elastic Nb₃Sn
- Plastic fully annealed Cu

Nb₃Sn Cluster Model:

- Absolute area of Nb₃Sn preserved
- Plastic behavior for Nb₃Sn
- Plastic fully annealed Cu

Cylindrical Shell Model:

- Plastic composite Material of Nb₃Sn and fully annealed Cu
- Plastic fully annealed Cu

Maximum Detail Model:

- Fully elastic Nb₃Sn
- Plastic fully annealed Cu

Nb₃Sn Cluster Model:

- Absolute area of Nb₃Sn preserved
- Plastic behavior for Nb3Sn
- Plastic fully annealed Cu

Cylindrical Shell Model:

- Plastic composite
 Material of Nb₃Sn and
 fully annealed Cu
- Plastic fully annealed Cu

Theory based Evaluation

Strain Dependency

Filament Cracking

- Highly dependent on the local composition
- Is a filament dead when it has cracks?
- -> Irreversibility Cliff

->rather than a strict limit Fundamental Difference to Strain Scaling Law

3D Residual Deviatoric Strain Central Cross Section of Sample 5 after reaction in centre

8/22/2019

Local B_{C2} after reaction Central Cross Section of Sample 5 after reaction in centre

8/22/2019

20

Local J_C @ B = 10.13465825after reaction Central Cross Section of Sample 5 after reaction in centre

Comparison of I_C Values for Sample 5

Now Let's introduce Filament Cracking

3D Residual Deviatoric Strain Central Cross Section of Sample 5 after reaction in centre

> 3D Residual Deviatoric Strain Central Cross Section of Sample 5 after reaction in centre

Cracking Disregarded

Cracking from .26%

 $\label{eq:local_bc} \begin{array}{c} \mbox{Local B}_{C2} \mbox{ after reaction} \\ \mbox{Central Cross Section of Sample 5 after reaction in centre} \end{array}$

 $\label{eq:Local B_{C2}} \begin{array}{c} \mbox{after reaction} \\ \mbox{Central Cross Section of Sample 5 after reaction in centre} \end{array}$

Local $J_C \otimes B = 10.13465825$ after reaction Central Cross Section of Sample 5 after reaction in centre Local J_C @ B = 10.13465825after reaction Central Cross Section of Sample 5 after reaction in centre

Cracking Disregarded

Cracking from .26%

Comparison of I_C Values for Sample 5 and $\varepsilon_{ultimate} = 0.26$

Cracking Disregarded

Cracking from .26%

Comparison of I_C Values for Sample 5 and $\varepsilon_{ultimate} = 0.3$

Comparison of I_C Values for Sample 5 and $\varepsilon_{ultimate} = 0.2$

Comparison of I_C Values for Sample 5 and $\varepsilon_{ultimate} = 0.26$

Results

We were able to qualitatively explain:

- The bending and marking of the Strands
- The nonlinear influences of the Sample Holder
- difference between I_C and B_{C2} degradation
- Inconsistencies in I_C degradation for high Sample numbers

Fits on Measurement Data

Results

- It was not possible to:
- Provide an Analysis tool to accurately predict the I_C degradation in areas of Large thermal gradients

We were able to predict:

• B_{C2} degradation tendencies of the Samples

Results

Conclusion

- We have modeled the experimental Set up
- We were able to identify the two main sources of degradation
- This was verified by the annealing experiment
- Still Model Based Predictions for future
 experiments remain a big challenge

Thank you for your attention.

Backup Slides

Discussion

- ε_{ultimate} as a fit parameter cannot be found consistently for all samples, but with individual fits we can fit the measurements very well.
- The individual $\varepsilon_{\text{ultimate}}$ lie within a reasonable range of literature values and show a linear growth with Hotspot Temperature.
- Either this is physically relevant or a systematic error within the Analysis Model (see B_{C2} Degradation Maybe Material Data for extreme temperatures?).

Temperature Evolution

RRP Stress-Strain Curve

