

Jonas Christ Supervision: Lorenzo Bortot

Update on the Application of Spectral Element Methods on Quench Simulation

Outline

- Numerical context of quench simulation
- Spectral Element Method in a nutshell
- Proof of concept
- Implementation notes
- **Outlook**

Problem

• Quench propagation: Multi-Physics *(here: reduce to thermal problem)*

Magnet geometry: Multi-Scale, 3D *(here: reduce to 1D cable simplification)*

≻ Best way to reach fast and accurate simulation?

Main challenge: Increase in simulated cable length and/or increase in precision requirements ⇒ High increase in computational time

Problem

Approach A: Find reasonable simplifications or models, e.g. for Comsol

Approach B:

Optimize numerical procedure which is internally used by solving programs

≻ Best way to reach fast and accurate simulation?

Ongoing research for finding numerical procedure best suitable for quench propagation in magnets* *My contribution: Implement solver for 1D thermal problem using a nonstandard numerical solution procedure - SEM*

Reminder: Excerpt of Standard Simulation Workflow

Discretization Method

Most wide-spread:

Finite Element Method (FEM)

- \triangleright Discretize space by mesh nodes z_i
- Identify unknowns with temperature at nodes, i.e. $\theta(z_i)=u_i$
- \triangleright Define matrix entries by dense mesh, low order polynomials

+ Arbitrary geometries − Refinement comp. expensive

(Picture taken from John Burkardt, PostScript Graphics Creation PLOT_TO_PS, 2011, online: https://people.sc.fsu.edu/~jburkardt/f_src/plot_to_ps/plot_to_ps.html)

▶ Spectral Element Method as alternative approach?

Spectral Element Method (SEM) – I

• Polynomial approximation of function \sim

$$
f(\xi) \approx \sum_{n=0}^{N} \widetilde{f}_n \, \xi^n
$$

Chebyshev-polynomials T_n : $T_0 = 1,$ $T_1 = \xi,$ $T_2 = 2 \xi^2 - 1$, ...

$$
\sum_{n=1}^{\infty} \text{Orthogonality} \sum_{n=1}^{\infty} T_n T_m \omega_T d\xi = c_n \delta_{n,m}
$$

Spectral Element Method (SEM) – II

unction value

- Discretization of space with mesh and polynomials
- Discretized PDE as matrix equation for element wise representation

$$
\theta^e \approx \sum_{n=0}^N u_n^e T_n
$$

 \triangleright Sparse mesh, high order polynomials

Benchmark: Proof of Concept

- 1D adiabatic thermal quench propagation in simplified LTS cable
- Cheby-SEM in Matlab vs. Comsol

- \triangleright Results in good accordance
- \triangleright Proof of functionality

22/08/2019 **10 Update on the application of spectral** element methods on quench simulation

Benchmark: Proof of Concept

More general:

Pro FEM

- Multi-purpose tool
- Steep changes
- Inhomogeneous materials

Pro SEM:

- Specialized tool
- **Accuracy**
- Less storage requirements
- Simple refinement

22/08/2019 **12/08/2019** Update on the application of spectral 11 element methods on quench simulation

Implementation Notes

What it is:

- **Matlab scripts**
- Object-oriented:
	- 2 main classes
	- 15 methods
	- 30 basic unit and function tests
- Simulation driver:
	- Basic: \sim 50 LOC
	- Framework: ~ 150 LOC
	- Postprocessing: ~ 300 LOC
- ~500 LOC in classes

Framework example:

• Resolution adaption over time reflecting quench front propagation

Summary

- Cheby-SEM and necessary framework has been implemented in Matlab
- Implementation has been validated for an academic example against FEM
- Clear advantages of SEM compared to FEM for quench propagation are shown:
	- 1. Simple refinement
		- \triangleright Obtain desired accuracy
	- 2. Less storage
		- \triangleright Cheaper application to larger geometries
	- 3. Local resolution
		- \triangleright Easy adaption to quench front

What's next? – Background I

- Non-insulated (NI) HTS coils
	- Wounded tapes
	- Solenoid
	- Quench tolerant (Self protection)

What's next? – Background II

- Non-insulated (NI) HTS coils
	- Wounded tapes
	- **Solenoid**
	- Quench tolerant (Self protection)
- Planned application in fusion technology (cmp. e.g. tokamak energy)
- Application in accelerator technology?

(Picture taken from tokamak energy, WAM-HTS presentation, 2019,

https://indico.cern.ch/event/775529/contributions/3334053/attachm ents/1829923/3003215/20190412_GB_Stability_and_quench_dyn amic behaviour of Tokamak Energy REBCO QA coils Indico.p df#search=van%20nugteren%20AND%20EventID%3A775529)

What's next? - Task

- Simulation of HTS tape peak temperature during quench
	- 1D simplified model
	- Current sharing btw. super- and normalconducting domains
	- Equivalent resistance
- Mid-term:
	- Coolant (1D + 1D)
	- Turn-to-turn propagation

Outlook: Numerical Aspects

- Coupling with magnetic problem?
- Advance to 3D simulation?

• Treatment of timedomain: solutions for multi-rate problem?

Only excerpt - focused on ongoing work in Darmstadt

