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Analysis Approach
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1. Feature engineering → summarize historical data 

e.g. resistance, characteristic time…

2. Classification → label features

e.g.      ,     , no statement possible…  

3. Analysis → comparison of features across time and circuits

e.g. clustering, trend analysis…

ClassificationFeature 

engineering
Analysis

𝑡

𝑣𝑎𝑙𝑢𝑒



Quench Heater Analysis (MB)
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Presentation Outline:

1. Feature engineering

a. Compression: Implementation and extension of the existing QH monitoring features

2. Classification 
a. Classification: Threshold based features classification to     and 

b. Comparison: Compare to LabVIEW classification and check differences with experts 

c. Extention: Extend existing classification methods

3. Trend analysis
a. Analysis: Comparison of QH features across time and circuits

ClassificationFeature 

engineering
Analysis

𝑡

𝑣𝑎𝑙𝑢𝑒

* Previously done in LabVIEW:

Z. Charifoulline et al., “Overview of the Performance of Quench Heaters for High-Current LHC Superconducting Magnets”, IEEE TAS 27(4), 06/2017 

Previously done in LabVIEW *



1. Feature engineering
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a. Compression: implementation and extension of the existing QH monitoring features



1.a Compression: Which features are extracted?
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GOAL: The features should summarize the properties of the exponential decay of the quench heater signals.

Voltage Current Resistance 

𝑅_𝐻𝐷𝑆_𝑖(𝑡) =
𝑈_𝐻𝐷𝑆_𝑖(𝑡)

𝐼_𝐻𝐷𝑆_𝑖(𝑡)

*contributed by Zinur Charifoulline 



1.a Compression: Which features are extracted?
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B. Characteristic time of exponential decay:

3

4

5

1. Charge approach:  ׬𝜃0
𝜃1 𝑓 𝑡 𝑑𝜃 = 𝜃0׬

𝜃1 𝑓0 (𝑡)𝑒
−
𝑡

෤𝜏𝑑𝜃 → 𝑠𝑎𝑣𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 ǁ𝜏 𝑓𝑜𝑟 𝑈 𝑎𝑛𝑑 𝐼

2. Energy approach: ׬𝜃0
𝜃1 𝑓2 𝑡 𝑑𝜃 = 𝜃0׬

𝜃1 𝑓0
2(𝑡)𝑒−

𝑡

෤𝜏𝑑𝜃 → 𝑠𝑎𝑣𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 ǁ𝜏 𝑓𝑜𝑟 𝑈 𝑎𝑛𝑑 𝐼

3. Linear regression: min(
𝑝

𝑓 𝑡 − (𝑝0 + 𝑝1𝑥)) → 𝑠𝑎𝑣𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝1 𝑓𝑜𝑟 𝑈 𝑎𝑛𝑑 𝐼

4. Exponential fit: min
𝑝
(𝑓 𝑡 − 𝑝0𝑒

−𝑝2(𝑡−𝑝1)) → 𝑠𝑎𝑣𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝2 𝑓𝑜𝑟 𝑈 𝑎𝑛𝑑 𝐼

5. Change in characterisic time: 
𝑓 𝑡

𝑓 𝑡 `
= − ǁ𝜏

𝑓0 (𝑡)𝑒
−
𝑡
𝜏

𝑓0 𝑡 `𝑒
−
𝑡
𝜏

→ 𝑠𝑎𝑣𝑒 𝑚𝑒𝑎𝑛 & 𝑠𝑡𝑑 𝑜𝑓 𝒗𝒆𝒄𝒕𝒐𝒓 ǁ𝜏 𝑓𝑜𝑟 𝑈 𝑎𝑛𝑑 𝐼

1. first=𝑚𝑒𝑎𝑛(𝑚𝑒𝑑𝑖𝑎𝑛𝑓(𝑑𝑎𝑡𝑎[0:19],𝑤=3))           → 𝑠𝑎𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑈, 𝐼 𝑎𝑛𝑑 𝑅

2. last=𝑚𝑒𝑎𝑛(𝑚𝑒𝑑𝑖𝑎𝑛𝑓(𝑑𝑎𝑡𝑎[−20:−1],𝑤=3)) → 𝑠𝑎𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑈, 𝐼 𝑎𝑛𝑑 𝑅

A. Initial values:



1.a Compression: Which features are extracted?
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C. Signal Similarity:

0 𝑓1
∗ − 𝑓2

∗
2 𝑓1

∗ − 𝑓3
∗

2 𝑓1
∗ − 𝑓4

∗
2

⋱
0 𝑓2

∗ − 𝑓3
∗

2 𝑓2
∗ − 𝑓4

∗
2

⋱ ⋱
0 𝑓3

∗ − 𝑓4
∗

2

⋱ ⋱ ⋱
0

→ 𝑠𝑎𝑣𝑒 6 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑈, 𝐼 𝑎𝑛𝑑 𝑅

𝑓𝑖
∗ − 𝑓𝑗

∗

2
= ෍

𝑡=0

𝑇

(𝑓𝑖
∗(𝑡) − 𝑓𝑗

∗(𝑡))2 ∀ 𝑖, 𝑗 = 1,2,3,4

2. Euclidean distance within the signals:

1. Normalize signals: 𝑓∗ =
𝑓 − min(𝑓)

max(𝑓) − min(𝑓)
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D. Subtract normalized signals with normalized reference signal and look if they are out of a certain envelope

𝑈𝑖′ 𝑡 −𝑈𝑖,𝑟𝑒𝑓 ′ 𝑡 < 𝐶𝑈 𝑒−
𝑡

2𝜏 ; 𝑖 = 1,2,3,4 → 𝑠𝑎𝑣𝑒 % 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑖𝑠 𝑖𝑠 𝑡𝑟𝑢𝑒

|𝐼𝑖′(𝑡) − 𝐼𝑖,𝑟𝑒𝑓′(𝑡)| < 𝐶𝐼 𝑒
−

𝑡

2𝜏 ; 𝑖 = 1,2,3,4 → 𝑠𝑎𝑣𝑒 % 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑖𝑠 𝑖𝑠 𝑡𝑟𝑢𝑒

|𝑅𝑖′(𝑡) − 𝑅𝑖,𝑟𝑒𝑓′(𝑡)| < 𝐶𝑅 𝑒
−

𝑡

2𝜏 ; 𝑖 = 1,2,3,4 → 𝑠𝑎𝑣𝑒 % 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑖𝑠 𝑖𝑠 𝑡𝑟𝑢𝑒

U_HDS_1_c2c = 0.9

I_HDS_1_c2c = 0.6

R_HDS_1_c2c = 0.2
𝐶𝑈

𝐶𝐼

𝐶𝑅

𝑈𝑖 ′ 𝑡 −𝑈𝑖,𝑟𝑒𝑓 ′ 𝑡 |𝐼𝑖′(𝑡) − 𝐼𝑖,𝑟𝑒𝑓′(𝑡)| |𝑅𝑖′(𝑡) − 𝑅𝑖,𝑟𝑒𝑓′(𝑡)|

1.a Compression: Which features are extracted?



2. Classification
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a. Classification: Threshold based features classification to      and

b. Comparison: Compare to LabVIEW classification and check differences with experts 

c. Extention: Extend existing classification methods



2.a Classification: Threshold based signal classification
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𝑓𝑖𝑟𝑠𝑡 = 𝑚𝑒𝑎𝑛 𝑚𝑒𝑑𝑖𝑎𝑛𝑓 𝑑𝑎𝑡𝑎 0: 19 , 𝑤 = 3

𝑙𝑎𝑠𝑡 = 𝑚𝑒𝑎𝑛(𝑚𝑒𝑑𝑖𝑎𝑛𝑓 𝑑𝑎𝑡𝑎 −20:−1 , 𝑤 = 3 )

Decay if:

𝑙𝑎𝑠𝑡 – 𝑓𝑖𝑟𝑠𝑡 > 20𝑉

> 20V

NO_Decay

Similarity:

𝑓𝑖′ − 𝑓𝑗′ 2

U_HDS_1
U_HDS_2
U_HDS_3
U_HDS_4

1. Difference across single component

2. Difference to other component (reference)

Discharge within range?

780𝑉 < 𝑓𝑖𝑟𝑠𝑡 < 980𝑉

15𝑉 < 𝑙𝑎𝑠𝑡 < 70𝑉

980V

780V

70V

15V

U_HDS_1

Curve2Curve comparison:

𝑈𝑖′ 𝑡 −𝑈𝑖,𝑟𝑒𝑓 ′ 𝑡 < 𝐶𝑈 𝑒−
𝑡

2𝜏 ;

|𝐼𝑖′(𝑡) − 𝐼𝑖,𝑟𝑒𝑓 ′(𝑡)| < 𝐶𝐼 𝑒
−

𝑡

2𝜏

|𝑅𝑖′(𝑡) − 𝑅𝑖,𝑟𝑒𝑓′(𝑡)| < 𝐶𝑅 𝑒
−

𝑡

2𝜏 ;

U_HDS_1 – U_Ref

𝝉 within range?

𝜏𝑖 − 𝜏𝑟𝑒𝑓,𝑖 < ±3𝑚𝑠 ; 𝑖 = 1,2,3,4

U_HDS_1

… OK

… NOT_OK
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2.b Comparison: Classify difference manually

→Analysed Signal

→Reference Signal

→Analysed Signal - Reference Signal

Voltage

↓
Current

↓
Resistance

↓



2.b Comparison: Overview
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For all 7140 PM entries from 2014 to 2018: 
• Classification deviates ~0.6% from LabVIEW classification:

• Different similarity measures

• Critical NOT_OKs have all been detected by both methods →
• Classification difference checked manually: 

• Manually labelled database contains 3130 OK, 116 NOT_OK and 3894 NO_Discharge

• LabVIEW: 99.75% intersection with manually labelled database

• Wrong classified signals: 1 OK, 17 NOT_OK*

• My classification: 99.54% intersection with manually labelled database 

• Wrong classified signals: 24 OK, 9 NOT_OK

*LabVIEW feature calculation got currently updated with signal normalization before comparison as well, and 

should therefore perform even better in the future.

→ Next: comparison of features across time and circuits
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2.c Extension: Comparison of CT calculation

Approach Explanation
Calculation 

Time / signal
Distribution [ms]*

Number of 

Outliers**

Charge approach න
𝜃0

𝜃1

𝑓 𝑡 𝑑𝜃 = න
𝜃0

𝜃1

𝑓0 (𝑡)𝑒
−
𝑡
෤𝜏𝑑𝜃 0.01s 80.7 ± 46.3 40

Energy approach න
𝜃0

𝜃1

𝑓2 𝑡 𝑑𝜃 = න
𝜃0

𝜃1

𝑓0
2(𝑡)𝑒−

𝑡
෤𝜏𝑑𝜃 0.01s 79.2 ± 12.6 40

Linear regression min(
𝑝

𝑓 𝑡 − (𝑝0 + 𝑝1𝑥)) 0.05s 96.7 ± 6.9 2

Exponential fit min
𝑝
(𝑓 𝑡 − 𝑝0𝑒

−𝑝2(𝑡−𝑝1)) 0.33s 89.5 ± 7.0 2

Change in 

characterisic time

𝑓 𝑡

𝑓 𝑡 `
= − ǁ𝜏

𝑓0 (𝑡)𝑒
−
𝑡
𝜏

𝑓0 𝑡 `𝑒−
𝑡
𝜏

0.01s 93.9 ± 11.3 2

*Mean value of U&I Signals < 1s

**Considering 3246 PM entries with discharges > 1s



15

2.c Extension: Different ways for classification

Threshold

feature 1

feature 2

Range threshold

feature 1

feature 2
Threshold is chosen, by 

experts.

Currently used thresholds:

Possible extensions:

Linear Classifier

feature 1

feature 2

𝜔 1
𝑇𝑥 + 𝑏1 = 0

Now we have access to historical 
data , one could also set the 

threshold, such that the distance 
to sample points is minimized.

𝑒. 𝑔.min
𝜔 1

𝜔 1

Scalable to higher dimensions and 
higher order decision boundaries.
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2.c Extension: Hard classification vs. soft classification
An overlap in the feature distribution can lead to false signal classification 

feature = 0.25 → P = 100%
→ P = 0%

feature = 0.25 → P = ?
→ P = ?

𝑚𝑒𝑎𝑛(𝜏𝑖 − 𝜏𝑖, 𝑟𝑒𝑓); 𝑖 = 1,2,3,4

In some of our features there is an overlap in feature distribution



2.c Extension: classify data using a Gaussian distribution
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Instead of assigning a explicit state to the feature, one could also assign a probability to it.

feature

𝐾 𝑥, 𝜇 = 𝑒
−

𝑥−𝜇 2

2∗𝜎2 = 𝑒
−
(0.25−0)2

2∗0.52 = 0.882 𝐾 𝑥, 𝜇 = 𝑒
−

𝑥−𝜇 2

2∗𝜎2 = 𝑒
−
(0.25−1)2

2∗0.52 = 0.325

P =
0.882

0.882 +0.325
∗ 100% = 73% P =

0.325

0.882 +0.325
∗ 100% = 27%

0 1

?

0.25

feature?

→scalable to more features



2.c Extension: Current workflow
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Rule based 

decision making

Feature 

engineering

Time series Checking by 

Experts
Actions

Manual adjustment

In case of a wrong decisions, experts have to manually adjust the thresholds or the feature calculation. 



2.c Extension: Workflow with feedback loop
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Linear classification makes it possible incorporate expert knowledge into the classification progress

Rule based 

decision making

Feature 

engineering

Time series Checking by 

Experts
Actions

Linear Classifier

feature 1

feature 2

𝜔 1
𝑇𝑥 + 𝑏1 = 0

Proof of concept linear classifier:

• Only PM entries with discharges (3246) for classification

• A linear classifier needs data to learn from: Dividing dataset into training and 

validation set (50%/50%)



2.c Extension: Performance on validation set
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• Performance (intersection with manually labelled dataset) on validation set:

• 99.32% with the LabVIEW classification: 0 OK and 11 NOT_OK wrong classified

• 98.82% with my classification: 11 OK and 8 NOT_OK wrong classified

• 98.40% with linear classifier trained on my features* : 10 OK and 16 NOT_OK wrong classified

• Linking my classification and linear classifier with logic &: 

• 4 NOT_OK wrong classified 

• With the used linear classifier* also the decision confidence is available

• Can be used to adjust actions (E.g. send out warning at already 30% confidence)

*Actually a support vector machine with a Gaussian RBF kernel was used. 

Fine tuning of hyper parameter is still in progress, detailed information will be in my master thesis.

My Cl. Lin. Cl. Output

OK OK OK

OK NOT_OK NOT_OK

NOT_OK OK NOT_OK

NOT_OK NOT_OK NOT_OK



Trend analysis
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a. Analysis: Comparison of QH features across time and circuits
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value [s]

time [years]

location 

[magnet]

→Browsing through data with dedicated SWAN-notebooks

𝑚𝑒𝑎𝑛(𝜏𝑖 − 𝜏𝑖, 𝑟𝑒𝑓); 𝑖 = 1,2,3,4

Voltage Current Resistance 

𝑅_𝐻𝐷𝑆_𝑖(𝑡) =
𝑈_𝐻𝐷𝑆_𝑖(𝑡)

𝐼_𝐻𝐷𝑆_𝑖(𝑡)

3.a Analysis: Comparison across time and circuits
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1. Prefiltering: Which PM entries are eligible for prediction?

All PM entries 2014-2018 7140

All PM entries 2014-2018 with decay 3246

Entries with up-to-date reference 1929

No Hardware Comissioning tests 1906

Number of Magnets 1232

Average sample points 1.547078

2. Plotting features as a function of time

3.a Analysis: Comparison across time and circuits



Conclusion & Outlook

→ Embedding of LabVIEW QH feature calculation

→ Extension with further features

→ Implementation of LabVIEW QH classification approach

→ Comparison of different feature calculation methods

→ New classification concept to incorporate expert knowledge 

→ Browsing through data with dedicated SWAN-notebooks 

→ Historical data for both quench heaters and busbar resistance available now

→The same approach can be used for further applications

24

Classification

Feature 

engineering

Analysis

𝑡

𝑣𝑎𝑙𝑢𝑒
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1. Feature Overview
Feature name Explanation Parameter Nr. Features/ParameterNr. Of Features Upper Threshold Lower Threshold Capped at

I_MEAS I_MEAS 1 1

initial mean(medianfilter(data[0:19,w=3])) UIR 4 12 980,None,None 780,None,None

last mean(medianfilter(data[-20:-1,w=3])) UIR 4 12 70,None,None 15,None,None

chargeApproach characteristic time of exp. decay UI 4 8

energyApproach characteristic time of exp. decay UI 4 8

linReg characteristic time of exp. decay UI 4 8

cTime_mean mean characteristic time of exp. decay UI 4 8

cTime_std std characteristic time of exp. decay UI 4 8

SimilarityMatrix eucledian distance within the signals UIR 6 18

SimilarityMatrix_normalized eucledian distance within the signals normalized UIR 6 18

initial_Ref mean(medianfilter(data[0:19,w=3])) UIR 4 12

last_Ref mean(medianfilter(data[-20:-1,w=3])) UIR 4 12

chargeApproach_Ref characteristic time of exp. decay UI 4 8

energyApproach_Ref characteristic time of exp. decay UI 4 8

linReg_Ref characteristic time of exp. decay UI 4 8

cTime_mean_Ref mean characteristic time of exp. decay UI 4 8

cTime_std_Ref std characteristic time of exp. decay UI 4 8

SimilarityMatrix_Ref eucledian distance within the signals UIR 6 18

SimilarityMatrix_normalized_Ref eucledian distance within the signals normalized UIR 6 18

c2c substracted signals have to be within envelope UI 4 8

c2c_doubleTCEnvelope substracted signals have to be within envelope UIR 4 12 0,0,0 0.1,0.1,1

c2c_doubleTCEnvelope_normalized substracted signals have to be within envelope UIR 4 12

Total 233
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1. Feature Compression

Reason for abs():

• Histograms are almost symmetric

• Values could cancel each other out (e.g. Similarity Matrix)

Feature name Explanation Parameter Nr. Features/ParameterNr. Of Features Upper Threshold Lower Threshold Capped at

energyApproach_dif energyApproach - energyApproach_Ref UI 4 8

cTime_mean_dif cTime_mean - cTime_mean_Ref UI 4 8

cTime_std_dif cTime_std - cTime_std_Ref UI 4 8 1200,100, None

initial_dif initial - initial_Ref UIR 4 12 0.003

SimilarityMatrix_dif SimilarityMatrix - SimilarityMatrix_Ref UIR 6 18 None,None, 20

SimilarityMatrix_normalized_dif SimilarityMatrix_normalized - SimilarityMatrix_normalized_RefUIR 6 18

Total 72

Feature name Explanation Parameter Nr. Features/ParameterNr. Of Features Upper Threshold Lower Threshold Capped at

energyApproach_dif_mean mean(abs(energyApproach_dif)) UI 1 2 0.0025,0.0025

cTime_std_dif_mean mean(abs(cTime_std_dif)) UI 1 2 0.25,0.0025

initial_dif_mean mean(abs(initial_dif)) UIR 1 3 25,25,1

c2c_doubleTCEnvelope_mean substracted signals have to be within envelope UIR 1 3 0.1,0.1,1

SimilarityMatrix_dif_mean mean(abs(SimilarityMatrix_dif)) UIR 1 3 1000,150,10

Total 13

Feature comparison

Feature compression


