

Python Implementation and Extension of the Quench Heater Monitoring Framework

Christoph Obermair

1. Feature engineering \rightarrow summarize historical data

e.g. resistance, characteristic time...

2. Classification \rightarrow label features

e.g. 📀, 😵 , no statement possible...

3. Analysis → comparison of features across time and circuits e.g. clustering, trend analysis...

Quench Heater Analysis (MB)

Presentation Outline:

1. Feature engineering

a. Compression: Implementation and extension of the existing QH monitoring features

2. Classification

- a. Classification: Threshold based features classification to 📀 and 😣
- b. Comparison: Compare to LabVIEW classification and check differences with experts
- c. Extention: Extend existing classification methods
- 3. Trend analysis

a. Analysis: Comparison of QH features across time and circuits

Z. Charifoulline et al., "Overview of the Performance of Quench Heaters for High-Current LHC Superconducting Magnets", IEEE TAS 27(4), 06/2017

1. Feature engineering

a. Compression: implementation and extension of the existing QH monitoring features

GOAL: The features should summarize the properties of the exponential decay of the quench heater signals.

A. Initial values:

- 1. first=mean(medianf(data[0:19],w=3)) \rightarrow save value for U, I and R
- 2. last=mean(medianf(data[-20:-1],w=3)) \rightarrow save value for U, I and R

B. Characteristic time of exponential decay:

1.	Charge approach: $\int_{\theta_0}^{\theta_1} f(t) d\theta = \int_{\theta_0}^{\theta_1} f_0(t) e^{-\frac{t}{\tilde{\tau}}} d\theta$	\rightarrow save scalar $\tilde{\tau}$ for U and I
2.	Energy approach: $\int_{\theta_0}^{\theta_1} f^2(t) d\theta = \int_{\theta_0}^{\theta_1} f_0^2(t) e^{-\frac{t}{\tilde{\tau}}} d\theta$	\rightarrow save scalar $\tilde{\tau}$ for U and I
3.	Linear regression: $\min_{p}(f(t) - (p_0 + p_1 x))$	\rightarrow save scalar p_1 for U and I
4.	Exponential fit: $\min_{p}(f(t) - p_0 e^{-p_2(t-p_1)})$	\rightarrow save scalar p_2 for U and I
5.	Change in characterisic time: $\frac{f(t)}{f(t)} = -\tilde{\tau} \frac{f_0(t)e^{-\frac{t}{\tau}}}{f_0(t)e^{-\frac{t}{\tau}}}$	\rightarrow save mean & std of vector $\tilde{\tau}$ for U and I

C. Signal Similarity:

1. Normalize signals:

$$f^* = \frac{f - \min(f)}{\max(f) - \min(f)}$$

2. Euclidean distance within the signals:

$$\begin{split} \left\|f_{i}^{*}-f_{j}^{*}\right\|_{2} &= \sqrt{\sum_{t=0}^{T} (f_{i}^{*}(t)-f_{j}^{*}(t))^{2}} \quad \forall i,j=1,2,3,4 \\ 0 & \|f_{1}^{*}-f_{2}^{*}\|_{2} \quad \|f_{1}^{*}-f_{3}^{*}\|_{2} \quad \|f_{1}^{*}-f_{4}^{*}\|_{2} \\ \ddots & 0 & \|f_{2}^{*}-f_{3}^{*}\|_{2} \quad \|f_{2}^{*}-f_{4}^{*}\|_{2} \\ \ddots & \ddots & 0 & \|f_{3}^{*}-f_{4}^{*}\|_{2} \\ \ddots & \ddots & \ddots & 0 \end{split}$$

 \rightarrow save 6 values for U, I and R

D. Subtract normalized signals with normalized reference signal and look if they are out of a certain envelope

2. Classification

- a. Classification: Threshold based features classification to 📀 and 😢
- b. Comparison: Compare to LabVIEW classification and check differences with experts
- c. Extention: Extend existing classification methods

2.a Classification: Threshold based signal classification

1. Difference across single component

S... NOT_OK

2.b Comparison: Classify difference manually

2.b Comparison: Overview

For all 7140 PM entries from 2014 to 2018:

- Classification deviates ~0.6% from LabVIEW classification:
 - Different similarity measures
 - Critical NOT_OKs have all been detected by both methods →
- Classification difference checked manually:
 - Manually labelled database contains 3130 OK, 116 NOT_OK and 3894 NO_Discharge
 - LabVIEW: 99.75% intersection with manually labelled database
 - Wrong classified signals: 1 OK, 17 NOT_OK*
 - My classification: 99.54% intersection with manually labelled database
 - Wrong classified signals: 24 OK, 9 NOT_OK

\rightarrow Next: comparison of features across time and circuits

*LabVIEW feature calculation got currently updated with signal normalization before comparison as well, and should therefore perform even better in the future.

2.c Extension: Comparison of CT calculation

Approach	Explanation	Calculation Time / signal	Distribution [ms]*	Number of Outliers**
Charge approach	$\int_{\theta_0}^{\theta_1} f(t) d\theta = \int_{\theta_0}^{\theta_1} f_0(t) e^{-\frac{t}{\tilde{\tau}}} d\theta$	0.01s	80.7 ± 46.3	40
Energy approach	$\int_{\theta_0}^{\theta_1} f^2(t) d\theta = \int_{\theta_0}^{\theta_1} f_0^2(t) e^{-\frac{t}{\overline{\tau}}} d\theta$	0.01s	79.2 <u>+</u> 12.6	40
Linear regression	$\min_{p}(f(t) - (p_0 + p_1 x))$	0.05s	96.7 ± 6.9	2
Exponential fit	$\min_{p}(f(t) - p_0 e^{-p_2(t-p_1)})$	0.33s	89.5 ± 7.0	2
Change in characterisic time	$\frac{f(t)}{f(t)} = -\tilde{\tau} \frac{f_0(t)e^{-\frac{t}{\tau}}}{f_0(t)e^{-\frac{t}{\tau}}}$	0.01s	93.9 <u>+</u> 11.3	2

2.c Extension: Different ways for classification

Currently used thresholds:

Possible extensions:

2.c Extension: Hard classification vs. soft classification

An overlap in the feature distribution can lead to false signal classification

In some of our features there is an overlap in feature distribution

2.c Extension: classify data using a Gaussian distribution

Instead of assigning a explicit state to the feature, one could also assign a probability to it.

→scalable to more features

2.c Extension: Current workflow

In case of a wrong decisions, experts have to manually adjust the thresholds or the feature calculation.

2.c Extension: Workflow with feedback loop

Linear classification makes it possible incorporate expert knowledge into the classification progress

Proof of concept linear classifier:

- Only PM entries with discharges (3246) for classification
- A linear classifier needs data to learn from: Dividing dataset into training and validation set (50%/50%)

2.c Extension: Performance on validation set

- Performance (intersection with manually labelled dataset) on validation set:
 - 99.32% with the LabVIEW classification: 0 OK and **11 NOT_OK** wrong classified
 - 98.82% with my classification: 11 OK and **8 NOT_OK** wrong classified
 - 98.40% with linear classifier trained on my features* : 10 OK and **16 NOT_OK** wrong classified
- Linking my classification and linear classifier with logic &:
 - **4 NOT_OK** wrong classified

My Cl.	Lin. Cl.	Output
ОК	ОК	ОК
ОК	NOT_OK	NOT_OK
NOT_OK	ОК	NOT_OK
NOT_OK	NOT_OK	NOT_OK

- With the used linear classifier* also the decision confidence is available
 - Can be used to adjust actions (E.g. send out warning at already 30% confidence)

Trend analysis

a. Analysis: Comparison of QH features across time and circuits

3.a Analysis: Comparison across time and circuits

→Browsing through data with dedicated SWAN-notebooks

CERN

3.a Analysis: Comparison across time and circuits

1. Prefiltering: Which PM entries are eligible for prediction?

All PM entries 2014-2018	7140		
All PM entries 2014-2018 with decay	3246		
Entries with up-to-date reference	1929		
No Hardware Comissioning tests	1906		
Number of Magnets	1232		
Average sample points	1.547078		

2. Plotting features as a function of time

Conclusion & Outlook

- \rightarrow Embedding of LabVIEW QH feature calculation
 - \rightarrow Extension with further features
 - \rightarrow Implementation of LabVIEW QH classification approach
 - \rightarrow Comparison of different feature calculation methods
 - \rightarrow New classification concept to incorporate expert knowledge
 - \rightarrow Browsing through data with dedicated SWAN-notebooks
 - \rightarrow Historical data for both quench heaters and busbar resistance available now

 \rightarrow The same approach can be used for further applications

1. Feature Overview

Feature name	Explanation	Parameter	Nr. Features/Parameter	Nr. Of Features	Upper Threshold	Lower Threshold	Capped at
I_MEAS		I_MEAS	1	1			
initial	mean(medianfilter(data[0:19,w=3]))	UIR	4	12	980,None,None	780,None,None	
last	mean(medianfilter(data[-20:-1,w=3]))	UIR	4	12	70,None,None	15,None,None	
chargeApproach	characteristic time of exp. decay	UI	4	8			
energyApproach	characteristic time of exp. decay	UI	4	8			
linReg	characteristic time of exp. decay	UI	4	8			
cTime_mean	mean characteristic time of exp. decay	UI	4	8			
cTime_std	std characteristic time of exp. decay	UI	4	8			
SimilarityMatrix	eucledian distance within the signals	UIR	6	18			
SimilarityMatrix_normalized	eucledian distance within the signals normalized	UIR	6	18			
initial_Ref	mean(medianfilter(data[0:19,w=3]))	UIR	4	12			
last_Ref	mean(medianfilter(data[-20:-1,w=3]))	UIR	4	12			
chargeApproach_Ref	characteristic time of exp. decay	UI	4	8			
energyApproach_Ref	characteristic time of exp. decay	UI	4	8			
linReg_Ref	characteristic time of exp. decay	UI	4	8			
cTime_mean_Ref	mean characteristic time of exp. decay	UI	4	8			
cTime_std_Ref	std characteristic time of exp. decay	UI	4	8			
SimilarityMatrix_Ref	eucledian distance within the signals	UIR	6	18			
SimilarityMatrix_normalized_Ref	eucledian distance within the signals normalized	UIR	6	18			
c2c	substracted signals have to be within envelope	UI	4	8			
c2c_doubleTCEnvelope	substracted signals have to be within envelope	UIR	4	12	0,0,0		0.1,0.1,1
c2c_doubleTCEnvelope_normalized	substracted signals have to be within envelope	UIR	4	12			
Total				233			

1. Feature Compression

Feature comparison								
Feature name	Explanation	Parameter Nr. Features/Para	ameter N	r. Of Features	Upper Threshold	Lower Threshold	Capped at	
energyApproach_dif	energyApproach - energyApproach_Ref	UI	4	8				
cTime_mean_dif	cTime_mean - cTime_mean_Ref	UI	4	8				
cTime_std_dif	cTime_std - cTime_std_Ref	UI	4	8	1200,100, None			
initial_dif	initial - initial_Ref	UIR	4	12	0.003			
SimilarityMatrix_dif	SimilarityMatrix - SimilarityMatrix_Ref	UIR	6	18	None,None, 20			
SimilarityMatrix_normalized_dif	SimilarityMatrix_normalized - SimilarityMatrix_normalized_Re	UIR	6	18				
Total				72				
Feature compression								
Feature name	Explanation	Parameter Nr. Features/Para	ameter N	r. Of Features	Upper Threshold	Lower Threshold	Capped at	
energyApproach_dif_mean	mean(abs(energyApproach_dif))	UI	1	2			0.0025,0.0025	
cTime_std_dif_mean	mean(abs(cTime_std_dif))	UI	1	2			0.25,0.0025	
initial_dif_mean	mean(abs(initial_dif))	UIR	1	3			25,25,1	
c2c_doubleTCEnvelope_mean	substracted signals have to be within envelope	UIR	1	3			0.1,0.1,1	
SimilarityMatrix_dif_mean	mean(abs(SimilarityMatrix_dif))	UIR	1	3			1000,150,10	
Total				13				

Reason for abs():

- Histograms are almost symmetric
- Values could cancel each other out (e.g. Similarity Matrix)

