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1. Feature engineering — summarize historical data
e.g. resistance, characteristic time...
2. Classification — label features

Analysis Approach
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e.g. @, 0, no statement possible...
3. Analysis — comparison of features across time and circuits

e.g. clustering, trend analysis...




Quench Heater Analysis (MB)

Previously done in LabVIEW *

Feature Classification Analysis
engineering value
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Presentation Qutline:

1. Feature engineering
a. Compression: Implementation and extension of the existing QH monitoring features

2. Classification
a. Classification: Threshold based features classification to @ and @
b. Comparison: Compare to LabVIEW classification and check differences with experts
c. Extention: Extend existing classification methods
3. Trend analysis
a. Analysis: Comparison of QH features across time and circuits

CERN , _
\/_wl ‘ * Previously done in LabVIEW:

Z. Charifoulline et al., “Overview of the Performance of Quench Heaters for High-Current LHC Superconducting Magnets”, IEEE TAS 27(4), 06/2017



1. Feature engineering

a. Compression: implementation and extension of the existing QH monitoring features
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1.a Compression: Which features are extracted?

GOAL: The features should summarize the properties of the exponential decay of the quench heater signals.
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1.a Compression: Which features are extracted?

A. Initial values: 1. first=mean(medianf(data[0:19],w=3)) — save value for U,I and R

B. Characteristic time of exponential decay:

2. last=mean(medianf(data[—20:—1],w=3)) - save value for U,I and R

1.

t
Charge approach: feil F(O)do = feé;l £, (D)e"id

t
Energy approach: f:ol F2(t)d6 = fgéz)l f2(t)e"7do

Linear regression: min(f(t) — (py + p1x))
p

Exponential fit: min(f(t) — poe "P2(t=PV)
p

ﬂ . _i; fO (t)e_%

N t
f® fo (e

Change in characterisic time:

— save scalar T for U and |

— save scalar T for U and |

— save scalar p; for U and |

— save scalar p, for U and I

— save mean & std of vector 7 for U and |
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1.a Compression: Which features are extracted?

C. Signal Similarity:

1. Normalize signals:

2. Euclidean distance within the signals:

f — min(f)

f* =

max(f) — min(f)

T
If =71l = jZ(ﬁ*(t) —ff®)? Vij=1234
t=0

0

i =21l

0

Ifi = f51l
If2 = 51l

0

I = fallz
12 = fall2

Ifs = fall2

0

— save 6 values for U,I and R



1.a Compression: Which features are extracted?

D. Subtract normalized signals with normalized reference signal and look if they are out of a certain envelope

1'(t) = Lipef (£)] < Cre e

t

t
|Ui,(t) _Ui,ref ,(t)| < CU e 27;
t

|Ri’(t) - Ri,ref,(t)l < CR e 2 )

i=1234
i=1,234
i =1234

— save % for which this is true

— save % for which this is true

— save % for which this is true

|Ui,(t) _Ui,ref ,(t) |

1I;'(t) = Iiref ' (8]

IR;'(t) = Rires (1)
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2. Classification

a. Classification: Threshold based features classification to € and €

b. Comparison: Compare to LabVIEW classification and check differences with experts
c. Extention: Extend existing classification methods
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2.a Classification: Threshold based signal classification

1. Difference across single component

_ _
- > 20V
— m =
s s
S wo
200
000 005 010 015 020 025 030 000 005 010 015 020 025 030
Time [s) Time [s]
first = mean(medianf (data[0: 19],w = 3)) -
last = mean(medianf (data[—20: —1],w = 3))
600
Decay if: z
last - first > 20V % a0

= -

NO_Decay T e% oW o b b
Time [s]

Similarity:

17" = 7'll,

7
1

$ o Discharge within range?

780V < first < 980V

o 15V < last < 70V
ov
5V

2. Difference to other component (reference)

Voltage [V]

5 & 8

A\

U_HDS_1 - U_Ref

|
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Curve2Curve comparison:
|U/'(£) =Ujrer '(®)| < Cy e_z_tr;
I’ () = Liges (D) < i
IR (t) = Riyes (t)] < Cg e 77 ;

T within range?

T — Tref,i < i3ms ,l = 1,2,3,4

\
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... NOT OK
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2.b Comparison: Classify difference manually
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i 1st SWAN Users' Workshop
Know more
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2.b Comparison: Overview

For all 7140 PM entries from 2014 to 2018: ° —iE

» Classification deviates ~0.6% from LabVIEW classification:
 Different similarity measures
* Critical NOT_OKs have all been detected by both methods —

« Classification difference checked manually: T

« Manually labelled database contains 3130 OK, 116 NOT_OK and 3894 NO Dlscharge
« LabVIEW: 99.75% intersection with manually labelled database

* Wrong classified signals: 1 OK, 17 NOT_OK*
* My classification: 99.54% intersection with manually labelled database

* Wrong classified signals: 24 OK, 9 NOT_OK

— Next: comparison of features across time and circuits

*LabVIEW feature calculation got currently updated with signal normalization before comparison as well, and
should therefore perform even better in the future.
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2.C Extension: Comparison of CT calculation

characterisic time

t

@ _ .
FO e

: Calculation o . Number of
Approach Explanation Time / signal Distribution [ms] Outliers**
01 01 t
Charge approach , f(®)do = , fo (e 7do6 0.01s 80.7 + 46.3 40
01 01 t
Energy approach ) f2(t)do = , f&'(t)e 7d6 0.01s 79.2 +12.6 40
Linear regression m;n(f(t) — (po + p1x)) 0.05s 96.7 + 6.9 2
Exponential fit min(f (¢) — poe~P2(7PY) 0.33s 89.5+ 7.0 2
: t
Change in O _ O 0.01s 93.9 + 11.3 2

*Mean value of U&l Signals < 1s
**Considering 3246 PM entries with discharges > 1s

14



2.Cc Extension: Different ways for classification

Currently used thresholds:

Threshold is chosen, by
experts.

Threshold Range threshold
fea:rpre 2 | fea‘nure 2

® 00 | © 00
! 0% ! 0 o9
. | )

o | e T

o0 0%

' > feature 1 : : > feature 1

Possible extensions:

Linear Classifier

feaRure 2

_____

© %% Nwix+b =0
> feature 1

Now we have access to historical
data, one could also set the
threshold, such that the distance
to sample points is minimized.

e.g.min||lw ||
W 4

Scalable to higher dimensions and
higher order decision boundaries.
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2.Cc Extension: Hard classification vs. soft classification

An overlap in the feature distribution can lead to false signal classification

o /o

feature = 0.25 - P(®@) = 100% feature = 0.25 » P(®) =?
- P@) = 0% - P@) =7

In some of our features there is an overlap in feature distribution

mean(t; — T; ref);i =1,2,3,4

500 4
o T T T T T T T
\ —0.00025  0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 l 6
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2.Cc Extension: classify data using a Gaussian distribution

Instead of assigning a explicit state to the feature, one could also assign a probability to it.

o o—0—990-(2)0-9—00 o0—< o > feature

» feature

o
e
o (¢
vl
[u=y

llx—pll? (0.25-0)* _llx—pll? _(0.25-1)2
K(,u) = e 2x0> =e 2+052 = (.882 K(,u) = e 2x0> =e 2+052 =(0.325

_0.882 o — 720 0325 B
P(@) = 0882 +o32s * 100% = 73% P@) = o882 +o32s * 100% = 27%

‘i@ ‘ —scalable to more features r
N



In case of a wrong decisions, experts have to manually adjust the thresholds or the feature calculation.

CE/RW
\

S

2.Cc Extension: Current workflow

L
5™
200
000 005 010 015 020 025 030
Time [5]

Time series

A 4

Feature
engineering

A 4

Rule based
decision making

¥ X

o

o

A

Checking by
Experts

o

% Manual adjustment

Actions

\
N\
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2.c Extension: Workflow with feedback loop

Linear classification makes it possible incorporate expert knowledge into the classification progress

Time series Feature Rule based Checking by Actions
engineering decision making Experts

) (X (X A
% 4 o = N

A 4

A 4

Vaitage [v]
¥ & 8 8

Linear Classifier

feature 2

A 4

v
—
0@‘\
[< < ¥ e
Q
A 0@
(]
g L)
R (<)
+
o
1]
o

Proof of concept linear classifier:
* Only PM entries with discharges (3246) for classification
/-w] ‘ » Alinear classifier needs data to learn from: Dividing dataset into training and

validation set (50%/50%) 19



2.C Extension: Performance on validation set

o Performance (intersection with manually labelled dataset) on validation set:
. 99.32% with the LabVIEW classification: 0 OK and 11 NOT_OK wrong classified

. 98.82% with my classification: 11 OK and 8 NOT_OK wrong classified
. 98.40% with linear classifier trained on my features* : 10 OK and 16 NOT_OK wrong classified

My CI.

Lin. CI.

Output

. Linking my classification and linear classifier with logic &: [ ox

OK

OK

OK

NOT_OK

NOT_OK

. 4 NOT_OK wrong classified NOT_OK

OK

NOT_OK

NOT_OK

NOT_OK

NOT_OK

e With the used linear classifier* also the decision confidence is available

Can be used to adjust actions (E.g. send out warning at already 30% confidence)

cw *Actually a support vector machine with a Gaussian RBF kernel was used.
\\_/ Fine tuning of hyper parameter is still in progress, detailed information will be in my master thesis.
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Trend analysis

a. Analysis: Comparison of QH features across time and circuits

21



3.a Analysis: Comparison across time and circults

—Browsing through data with dedicated SWAN-notebooks

location
[magnet]

cw
\

vl

0
0

__________________________

value [s]

A

mean(t; — T, rer); i = 1,2,3,4

0.0008

0.0002

00010 4 9

Voltage A31L2
® ® energyApproach_dif meanl
L
[ ]
T .n T
= & » >
» time [years]
Voltage Current Resistance

, U_HDS_i(t)
R_HDS_i(t) = T 0
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3.a Analysis: Comparison across time and circults

1. Prefiltering: Which PM entries are eligible for prediction?

Sample points per magnet

400
All PM entries 2014-2018 7140 0
All PM entries 2014-2018 with decay 3246 300
Entries with up-to-date reference 1929 501
No Hardware Comissioning tests 1906 200

150
Number of Magnets 1232 100 1
Average sample points 1.547078 01

0

2. Plotting features as a function of time

Voltage ABL2

vl

10 p e ® L ] energyApproach_dif_meanU b d
cTime_std_dif_meanl
initial_dif_meanl
08 2c_doubleTCEnvelope_meanU
SimilarityMatrix_\d{1}_dif_ meanl
®
06 » ‘
L — ®  x
04 o0 g
ss o o
02 ° * 1
L d
00 oo o e * x “
T T T T
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Conclusion & Outlook

— Embedding of LabVIEW QH feature calculation

— Extension with further features

— Implementation of LabVIEW QH classification approach
— Comparison of different feature calculation methods

— New classification concept to incorporate expert knowledge

— Browsing through data with dedicated SWAN-notebooks

— Historical data for both quench heaters and busbar resistance available now

—The same approach can be used for further applications






1. Feature Overview

Feature name

Explanation

Parameter Nr. Features/Parameter Nr. Of Features Upper Threshold Lower Threshold Capped at

|_MEAS |_MEAS 1 1

initial mean(medianfilter(data[0:19,w=3])) UIR 4 12 980,None,None 780,None,None
last mean(medianfilter(data[-20:-1,w=3])) UIR 4 12 70,None,None 15,None,None
chargeApproach characteristic time of exp. decay ul 4 8

energyApproach characteristic time of exp. decay ul 4 8

linReg characteristic time of exp. decay ul 4 8

cTime_mean mean characteristic time of exp. decay ul 4 8

cTime_std std characteristic time of exp. decay ul 4 8

SimilarityMatrix eucledian distance within the signals UIR 6 18

SimilarityMatrix_normalized eucledian distance within the signals normalized UIR 6 18

initial_Ref mean(medianfilter(data[0:19,w=3])) UIR 4 12

last_Ref mean(medianfilter(data[-20:-1,w=3])) UIR 4 12

chargeApproach_Ref characteristic time of exp. decay ul 4 8

energyApproach_Ref characteristic time of exp. decay ul 4 8

linReg_Ref characteristic time of exp. decay ul 4 8

cTime_mean_Ref mean characteristic time of exp. decay ul 4 8

cTime_std_Ref std characteristic time of exp. decay ul 4 8

SimilarityMatrix_Ref eucledian distance within the signals UIR 6 18

SimilarityMatrix_normalized_Ref eucledian distance within the signals normalized UIR 6 18

c2c substracted signals have to be within envelope ul 4 8

c2c_doubleTCEnvelope substracted signals have to be within envelope UIR 4 12 0,0,0 0.1,0.1,1
c2c_doubleTCEnvelope_normalized substracted signals have to be within envelope UIR 4 12

Total 233



1. Feature Compression

Feature comparison

Feature name Explanation Parameter Nr. Features/Parameter Nr. Of Features Upper Threshold Lower Threshold Capped at
energyApproach_dif energyApproach - energyApproach_Ref ul 4 8
cTime_mean_dif cTime_mean - cTime_mean_Ref ul 4 8
cTime_std_dif cTime_std - cTime_std_Ref ul 4 8 1200,100, None
initial_dif initial - initial_Ref UIR 4 12 0.003
SimilarityMatrix_dif SimilarityMatrix - SimilarityMatrix_Ref UIR 6 18 None,None, 20
SimilarityMatrix_normalized_dif SimilarityMatrix_normalized - SimilarityMatrix_normalized_Re UIR 6 18
Total 72

Feature compression
Feature name Explanation Parameter Nr. Features/Parameter Nr. Of Features Upper Threshold Lower Threshold Capped at
energyApproach_dif_mean mean(abs(energyApproach_dif)) ul 1 2 0.0025,0.0025
cTime_std_dif_mean mean(abs(cTime_std_dif)) ul 1 2 0.25,0.0025
initial_dif_mean mean(abs(initial_dif)) UIR 1 3 25,25,1
c2c_doubleTCEnvelope_mean substracted signals have to be within envelope UIR 1 3 0.1,0.1,1
SimilarityMatrix_dif mean mean(abs(SimilarityMatrix_dif)) UIR 1 3 1000,150,10
Total 13

Reason for abs():
» Histograms are almost symmetric
* Values could cancel each other out (e.g. Similarity Matrix)



