

Wed-Mo-Or11-03, 25 September 2019, Vancouver - Canada

Magnetic Field Error Cancellation with HTS-Based Magnetic Screens

L. Bortot^{1,2}, M. Mentink¹, C. Petrone¹, J. Van Nugteren¹, A. Verweij¹, S. Schöps²

Replica: MPE-PE Section Meeting, 10 October 2019

This work is supported by:

(*) The 'Excellence Initiative' of the German Government and by the Graduate School of Computational Engineering at TU Darmstadt; (**) The Gentner program of the German Federal Ministry of Education and Research (grant no. 05E12CHA).

Outline

- 1. Motivation and Theoretical Background
- 2. Magnetic Field Quality in Accelerator Magnets
- 3. Persistent Magnetization in HTS Tapes
- 4. HTS-Based Magnetic Screens
- 5. Numerical Simulations

6. Conclusions and Next Steps

Introduction (1/2) - Motivation

What if future particle accelerators will be based on HTS magnets?

Topic:

Numerical methods for large-scale superconducting technologies

Research question:

Transient effects in HTS accelerator magnets, with emphasis on:

- Quench protection
- Magnetic field quality

Feather M2 magnet. Left: Magnetic flux density. Right: current density distribution in the coil

Introduction (2/2) - Theoretical Background

Formulation

Coupled **A-H** field formulation for time-domain analysis of HTS magnets [*]

Domain decomposition:

- A (Wb/m) where $\sigma \rightarrow 0$ (e.g. air, iron)
- **H** (A/m) where $\rho \rightarrow 0$ (e.g. coils)

Finite material properties \rightarrow solver stability

Numerical Validation

Magnetic field quality analysis in the HTS dipole insert-magnet Feather M2

Simulations () VS Experiments (---)

Very good agreement

[*] Bortot, Lorenzo, et al. "A Coupled AH Formulation for Magneto-Thermal Transients in High-Temperature Superconducting Magnets." *arXiv preprint arXiv:1909.03312* (2019). Presented at COMPUMAG 2019.

Magnetic field Quality in Accelerator Magnets

Importance: Stability of particle beams

Influence factors: mechanical tolerances, dynamic effects, iron saturation, **persistent magnetization**

Quantification: Magnetic field as multipole series expansion, with A_i , B_i skew and normal multipoles

Example: dipole magnet

• B_1 dipole field, $(A_{m \ge 1}, B_{n \ge 2})$ field error

Total Harmonic Distortion:

THD₁ =
$$1e^{-4} \frac{\left(\sum_{m=1}^{+\infty} A_m^2 + \sum_{n=2}^{+\infty} B_n^2\right)^{\frac{1}{2}}}{B_1}$$

Magnetic field representation by means of a multipole series expansion

Issue: Persistent Magnetization in Superconductors

Superconducting coil in a changing magnetic field $\partial_t B$

- Faraday Law, Screening currents J_{screen}
- Screening magnetic field B_{screen}
- $\sigma \rightarrow +\infty \rightarrow$ no decay \rightarrow persistent magnetization

Smaller filaments \rightarrow smaller B_{screen}

Coils made of HTS tapes:

- Wide filaments, 4-12 mm \rightarrow ~1000x more than in Nb-Ti / Nb₃Sn strands!
- Significant B_{screen}
- Magnetic field quality degradation, especially at low current

→ Potential showstopper for accelerator magnets

.. but the Problem may also be the Solution!

Thin layer approximation:

High aspect ratio (~1000), HTS thickness neglected

Example:

Selective field-cancellation for dipole field

ReBCO tapes in external magnetic field

HTS tapes can shape the magnetic field!

Magnetic Field Error Cancellation

Idea

HTS-based magnetic screen for magnetic field errors in the magnet aperture

Key Features

- Tapes aligned with main magnetic field component
- \checkmark Persistent magnetization \rightarrow screening of field errors
- \checkmark Brick wall geometry \rightarrow effective tape width increased
- ✓ Passive device

HALO: Harmonics-Absorbing Layered Object

Screens for dipoles (left) and quadrupoles (right)

Proof Of Concept

Key Ingredients:

- Reference magnetic field 1.
- Source of magnetic field error 2.
- Correction of the magnetic field error 3.
- \rightarrow Differential field quality measurement

Normal conducting dipole MCB22 @ Magnetic Measurement Lab (Bdg. 311), CERN

Proof Of Concept (cont'd)

Cross sectional view

86 mm

Cross sectional view of the rotating probe and the magnetic screen

Simulations: Magnetic field in the HB2 Dipole

Magneto-quasistatic analysis

- 100 mT peak field in the aperture
- 10 A/s ramp rate, then plateau

Magnetic flux density in (T) in the magnet aperture, with iron bars

Simulations: Magnetic Screen Baseline Design

Simulation of field quality (*) for:

- Iron bars scenario \rightarrow field error
- Magnetic Screen scenario → field correction

Comparison of field quality: Magnetic field multipoles

> 80% reduction of total harmonic distortion

Simulations: Magnetic Screen Optimized Design

Optimization

- 111 Increased no. of layers \rightarrow Compensation for skew multipoles a_i
- $\uparrow\uparrow\uparrow$ Increased no. of tapes per layer \rightarrow Compensation for normal multipoles b_i

Significant reduction of the field error!

Project Status

											1													
			Aug				Sep				Oct					Nov				Dec				
Step	Status	Time	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	
Procurement	100%																							
Manufacturing	90%																							
Assembly	0%	1 W (*)																						
Commissioning	0%	1 W (*)																						
Test campaign	0%	2 W (*)																						
Result Analysis	0%	?																				?		

(*) estimated

' Today

Use of HTS tapes in accelerator magnets:

→ Magnetic field quality errors (especially at low current) due to persistent magnetization

HTS-based magnetic screens for magnetic field correction

→ Passive device to cancel undesired field multipole components in the magnet aperture

Next Steps

- 1. Finalization of the first magnetic screen model
- 2. Experimental campaign, performance analysis
- 3. Prototype within an accelerator magnet

Thank you for your attention!

Contact: lorenzo.bortot@cern.ch

Annex

Simulations: Magnetic Screen Baseline Design

Comparison of field quality (*) in :

- Iron bars scenario \rightarrow field error
- Magnetic Screen scenario → field correction

> 80% reduction of total harmonic distortion

