

TECHNISCHE UNIVERSITÄT DARMSTADT

Jonas Christ, Lorenzo Bortot, Jeroen van Nugteren, Laura D'Angelo, Arjan Verweij

1D Quench Propagation Analysis in HTS Tapes with the Spectral Element Method

Outline

- Reminder: Numerical Aspects of SEM
- Background: HTS vs. LTS
- HTS-Applications in NIC
- Simulated Model
- Simulation Results
- Conclusion

No description of the underlying numerical method here – see presentation from 22/08/2019, https://indico.cern.ch/event/796548/contributions/3 532107/attachments/1895965/3128024/mid_term _presentation.pdf

Numerical Aspects of SEM

- 1D Cheby-SEM and necessary framework has been implemented in Matlab
- Implementation has been verified for an academic example against FEM

Clear advantages of
 SEM compared to FEM
 for quench propagation
 have been shown:

See presentation from 22/08/2019

- 1. Simple refinement
 - Obtain desired accuracy
- 2. Less memory consumption
 - Cheaper application to larger geometries
- 3. Local resolution
 - Easy adaption to quench front

Background: HTS vs. LTS

10/10/2019

HTS-Application in NIC

- Non-insulated HTS coils
 - Wounded tapes with normal conducting filling/tape in between
 - Solenoid
 - Quench through impurities, ind. coupling, (massive) radiation ...

(Picture taken from tokamak energy, WAM-HTS presentation, 2019, https://indico.cern.ch/event/775529/contributions /3334053/attachments/1829923/3003215/20190 412 GB Stability and quench dynamic behav iour_of_Tokamak_Energy_REBCO_QA_coils_In

dico.pdf)

Quench Propagation Analysis in HTS Tapes with the Spectral Element Method

HTS-Application in NIC

- Non-insulated HTS coils
 - Current can bypass quenching region in adjacent turns
 - Turn-to-turn (T2T)
 resistance?
 - External protection?
 - Upscaling for larger magnets?

Understanding of single tape quench behavior required
➢ Normal zone development?
➢ Quench resistance?

Model – Single HTS Tape

- Layers of Hastelloy, copper (x2), silver (x2) and Rebco
- External circuit:
 - Applied current *I*_{applied} constant over time
 - No active protection schemes

Model – Transient Simulation

- 1D Thermal runaway in HTS tape:
 - Ohmic losses
 - Thermal conduction
 - Adiabatic boundary
- Initial deposition of energy in tiny region around hotspot
- Simulate up to hotspot temperature of 300 K

CERN

10/10/2019

Model – Visualisation

10/10/2019

Model – Simulation Objectives

Results I – Copper Layer Thickness

- Less Cu: less thermal transport
 = lower Vnzp
- More Cu: more total mass and less resistance

 less power in larger volume
 - = lower Vnzp

Results II – Cooling

- Cooling in liquid He
 ~2 kW/m² K on total
 surface (non-practical)
- Rapid increase in reaction time, massive decrease in Vnzp
- Does not prevent burnout

 high cooling not a good
 idea?
- Low cooling
 -> insignificant influence

I. Cu layer II. Cooling III. V_{nzp} IV. t_{react} V. R_{quench}

Results III – Normal Zone Propagation Velocity

- For low temperatures

 (i.e. ~constant el.
 resistivity), Vnzp is
 found to be mainly a
 function of I
- More precisely: $V_{nzp} \propto I^{x(B,T0)}$ with weak influence of T0

Results IV – Reaction Time

- Time between 100 mV external voltage and 300 K at hotspot
- Above all, reaction time depends on applied current
- Precisely: power measure, $t_{react} \propto I^{-2}$
- Is external reaction during a few <u>ms</u> feasible?

Results V – Quench Resistance

- Exemplary: Resistance at end of simulation 300 K hotspot
- Clear dependency on applied current
- Significant influence of working point conditions
- Tuning of T2T
 resistance possible

Summary

Single tape quench protection challenges:

- External:
 - Influence of applied current on reaction time ~ 1/l²
 - Very short reaction time
- In practical applications cooling without influence (if not even worsening the situation)

Construction of self protective NIC

- Tuning of T2T resistance
 requires knowledge of
 quench-resistance
- Self protection has to be very fast and effective
- Consideration of timeconstants?

How (if at all) is an active (external) protection scheme feasible?

Conclusion for Cheby-SEM

Matlab tool dedicated for

- Transient quench simulation
- Parameter studies
- Manual
- Documentation
- plug&play routines
- no need to understand the numerics

Beta-Version on Gitlab: https://gitlab.cern.ch/steam/steam-ChebySEM

App 1.1 – Material Properties

- Influence of RRR and B relevant for low temperatures
- Less (parametrized) material data found for Ag, especially for high field or different RRR

App 1.2 – Parameters on Critical Values

10/10/2019

App 1.3 – (M)QE as Function of Working Point (Iapp,B,T0)

- Limits of calculation <u>here</u>: 50 – 1200 mJ, resolution 5 mJ (for runtime purposes)
- Minimum only for used initial temperature profile: Gaussian with fixed variance 3mm
 - ≻ (M)QE

QE of 5mJ in initial quench volume ~(12mm x 0.1mm x 10mm) > ~ 0.4 J/cm^3

App 1.4 – Transient Behaviour

• (remember: default simulation settings)

App 2.1 – Cu layer on Resistance

- Variation of layer thickness without significant influence for dCu > 10um
- constant factor $\frac{V_{nzp} t_{react}}{d_{Cu}}$ (Wiedemann-Franz law?)

App 2.2 – Including Ag Properties

- Same initial energy for same NC-thickness
- No significant influence
- Replacing with Cu for given simulation reasonable
- Influence of RRR of Cu and Ag may change this statement for low thicknesses

App. - Reminder: Excerpt of Standar from 22/08/2019 Simulation Workflow

App. - Spectral Element Method (Section from 22/08/2019)

 Polynomial approximation of function

. .

$$f(\xi) \approx \sum_{n=0}^{N} \widetilde{f_n} \, \xi^n$$

• Chebyshev-polynomials T_n : $T_0 = 1$, $T_1 = \xi$, $T_2 = 2 \xi^2 - 1$, ...

> Orthogonality
$$\bigvee$$

 $\int_{-1}^{1} T_n T_m \,\omega_T \,d\xi = c_n \delta_{n,m}$

App. - Spectral Element Method (Cheventation from 22/08/2019

function value

- Discretization of space with mesh and polynomials
- Discretized PDE as matrix equation for element wise representation

$$\theta^e \approx \sum_{n=0}^N u_n^e T_n$$

Sparse mesh, high order polynomials

App. - Benchmark: Proof of Concept 22/08/2019

	Solver	Runtime	# DoF
Comsol	FEM, standard fine mesh	33 s	12.000
Comsol	FEM, adaptive mesh	15 s	400 - 500
Matlab	SEM, adaptive polynomial order	19 s	< 200

More general:

Pro FEM

- Multi-purpose tool
- Steep changes
- Inhomogeneous materials

Pro SEM:

- Specialized tool
- Accuracy
- Less storage requirements
- Simple refinement

Update on the application of spectral element methods on quench simulation

App. - What's next? - Background in 22/08/2019

- Non-insulated (NI) HTS coils
 - Wounded tapes
 - Solenoid
 - Quench tolerant (Self protection)
- Planned application in fusion technology (cmp. e.g. tokamak energy)
- Application in accelerator technology?

(Picture taken from tokamak energy, WAM-HTS presentation, 2019,

https://indico.cern.ch/event/775529/contributions/3334053/attachm ents/1829923/3003215/20190412_GB_Stability_and_quench_dyn amic_behaviour_of_Tokamak_Energy_REBCO_QA_coils_Indico.p df#search=van%20nugteren%20AND%20EventID%3A775529)

App. - What's next? - Task

- Simulation of HTS tape peak temperature during quench
 - 1D simplified model
 - Current sharing btw. super- and normalconducting domains
 - Equivalent resistance
- Mid-term:
 - Coolant (1D + 1D)
 - Turn-to-turn propagation

