STEAM-LEDET

<u>Report</u>

Magnet name: MQY_8Coils Simulation number: 576

Input file: D:\Federica_PC\LEDET\MQY_8Coils\Input\MQY_8Coils_576.xlsx

startLEDET file: D:\Federica_PC\LEDET\startLEDET.xlsx

STEAM-LEDET Website

Main simulation results

startLEDET file: D:\Federica_PC\LEDET\startLEDET.xlsx
Input file: D:\Federica_PC\LEDET\MQY_8Coils\Input\MQY_8Coils_576.xlsx

Magnet name: MQY_8Coils Simulation number: 576

Adiabatic hot-spot temperature: 58 K in group # 47 Quench load: 1.29 MIIt in group # 1

Average IFCL energy per unit of conductor (no insulation) deposited during the transient: 49 mJ/cm^3 Total IFCL loss deposited during the transient: 1388 J

Energy extracted in the EE system during the transient: 112.138 kJ Fraction of magnet energy extracted in the EE system during the transient: ~38%

Peak current is 1 times the initial value. Peak magnetic field is 1 times the initial value.

Peak temperature in the windings at the end of the discharge: 47 K. Minimum temperature in the windings at the end of the discharge: 17 K. Average temperature in the windings at the end of the discharge: 36 K. Standard deviation of the temperature in the windings at the end of the discharge: 10 K. Temperature variation in the windings at the end of the discharge: 29 K.

Order of coil sections in LEDET

Order of groups in LEDET

Order of half-turns in LEDET

Electrical order of the half-turns

Current polarities in group

Coil parts A and B

Currents in the coil sections and hot-spot temperature

Currents in the system

Resistances of coil sections and total coil resistance

Temperature of each half-turn

Adiabatic hot-spot temperature in each group

Time of quench of each conductor

Time of quench of each conductor

Voltage across each coil section, and across the magnet

Voltages to ground after each half-turn

Peak absolute voltages to ground during the entire transient

Time at which the peak voltage to ground occurs in each half-turn

Maximum and minimum voltages to ground during the entire transient

Voltage to ground at a selected time

Voltage to ground at multiple selected times

Turn-to-turn voltages

Peak absolute turn-to-turn voltages during the entire transient

Time at which the peak turn-to-turn occurs in each turn

Magnet differential inductance

Average magnetic field in each half-turn

Initial average magnetic field in each half-turn

Peak temperature distribution during the transient

Temperature distribution at a selected time

Peak inter-filament coupling loss per unit volume during the transient

Voltage across power supply

Voltage across each heater strip

Current through each heater strip

Resistance of each heater strip circuit

Report generated with STEAM-LEDET.

STEAM-LEDET Website