JET SUBSTRUCTURE FOR HIGGS PHYSICS

Simone Marzani Università di Genova & INFN Sezione di Genova

Higgs Couplings 2019
30 September - 4 October 2019
University of Oxford

OUTLINE

- (Higgs) boson tagging with jet substructure: where we are
- Augmenting performance: machine-learning for jet physics
- Conclusions and Open Questions

LOOKING INSIDE JETS

- the two major goals of the LHC
 - search for new particles
 - characterise the particles we know
- jets can be formed by QCD particles but also by the decay of massive particles (if they are sufficiently boosted)
- how can we distinguish signal jets from background ones?

SUBSTRUCTURE IN A NUTSHELL

- the final energy deposition pattern is influenced by the originating splitting
- hard vs soft translate into 2-prong vs
 I-prong structure
- picture is mudded by many effects (hadronisation, Underlying Event, pileup)
- two-step procedure:
 - grooming: clean the jets up by removing soft radiation
 - tagging: identify the features of hard decays and cut on them

ATHEORIST'S JOB

 devise clever ways to project the multi-dimensional parameter space of final-state momenta into suitable lower dimensional (typically I-D) distributions $p_t \gg m$

W/Z/H

for an introduction see SM, Soyez, Spannowsky

FROM IDEAS TO PRECISION

- understanding of groomers and taggers led to the definition of theory-friendly efficient tools, e.g. soft drop:
 - good perturbative properties (convergence, absence of soft effects such as nonglobal logs)
 - small (but non-trivial) non-perturbative corrections

FROM THEORY TO DATA

- time is mature for theory / data comparison
- reduced sensitivity to non-pert physics (hadronisation and UE) should make the comparison more meaningful
- what is the value of unfolded measurements / theory comparisons for "discovery" tools?
 - understanding systematics (e.g. kinks and bumps)
 - where non-pert. corrections are small, test perturbative showers in MCs
 - at low mass, hadronisation is large but UE is small: TUNE!

THEORY PREDICTIONS...

- large range of masses where non-pert. corrections are small and we can trust resummation
- they can be included through MC or analytical modelling

...AND THE DATA

PERFORMANCE & RESILIENCE

- first-principle understanding of groomers' and taggers' perturbative properties has reached remarkable levels
- resilience measures a tagger's robustness against nonperturbative effects (hadronisation and UE)
- it is defined in terms of signal/background efficiencies with/without non-pert. contributions Looking inside jets

$$\zeta = \left(\frac{\Delta \epsilon_S^2}{\langle \epsilon \rangle_S^2} + \frac{\Delta \epsilon_B^2}{\langle \epsilon \rangle_B^2}\right)^{-1/2}$$

$$\Delta \epsilon_{S,B} = \epsilon_{S,B} - \epsilon'_{S,B},$$

$$\langle \epsilon \rangle_{S,B} = \frac{1}{2} \left(\epsilon_{S,B} + \epsilon'_{S,B}\right)$$

HARD WORK DOES PAY OFF

- QCD and EW
 corrections to obtain
 Z+jets and W+jets
- Higgs p_T spectrum corrected for finite top mass effects
- inclusion of N³LO normalisation
- matching NLO-PS
- state-of-the arts PDFs

- state-of-the art jet reconstruction (anti-k_t
 & particle-flow)
- b-tagging
- soft-drop grooming
- 2-prong jets identified with energy correlation function N₁
- decorrelation:
 N¹2→N¹,DDT2

HARD WORK DOES PAY OFF

- QCD and EW
 corrections to obtain
 Z+jets and W+jets
- Higgs p_T spectrum corrected for finite top mass effects
- inclusion of N³LO normalisation
- matching NLO-PS
- state-of-the arts PDFs

- state-of-the art jet reconstruction (anti-k_t
 & topoclusters)
- b-tagging
- trimming
- 2-prong jets identified by requiring two track subjets with variable R

DIFFERENCES IN GROOMING: SOFT-DROP VS TRIMMING

- CMS favours soft drop, ATLAS trimming
- Performance depends on the detail of the jet reconstruction procedure / detector
- However, performance is not the only criterion

- trimming has an abrupt change of behaviour due to fixed R_{sub}
- loss of efficiency at high pT
- in SD angular resolution controlled by the exponent β: phase-space appears smoother
- SD under better theory control

DIFFERENCES INTAGGING: SHAPE VS VARIABLE-R

- CMS analysis cuts on a shape to isolate
 2-pronged jets
- N₁₂ is a ratio of generalised energy correlation functions optimised to work after grooming

Moult, Necib, Thaler (2016)

 DDT is a procedure to de-correlate the mass from the jet shape cut, reducing sculpting

Dolen, Harris, SM, Nhan, Rappoccio (2016)

ATLAS analysis looks for 2 track jets using variable-R jets

Krohn, Thaler, Wang (2009)

$$d_{ij}=\min\left[p_{Ti}^{2n},p_{Tj}^{2n}
ight]R_{ij}^{2}, \qquad d_{iB}=p_{Ti}^{2n}R_{ ext{eff}}(p_{Ti})^{2}$$
 $R_{ ext{eff}}(p_{T})=\min\left[rac{
ho}{p_{T}},R_{ ext{max}}
ight]$ 30 GeV

WHAT'S LEFT TO DO?

- \blacksquare $H \rightarrow bb$ is the holy grail of jet substructure, where it all started ... embarrassingly it's not been observed yet!
- Need more efficient tools?
 - enter machine learning!

DEEP LEARNING

- a wave of machine learning algorithms has hit jet physics in the past 3/4 years
- ML algorithms are powerful tools for classification, can we then apply them to our task?

- if an algorithm can distinguish pictures of cats and dogs, can it also distinguish QCD jets from boosted-objects?
- number of papers trying to answer this question has recently exploded!
- very active and fast-developing field

JETS AS IMAGES

- jet images do what they say: project the jet into a nxn pixel image, where intensity is given by energy deposition
- use convolutional neural network (CNN) to classify
- right pre-processing is crucial for many reasons: we average over many events and Lorentz symmetry would wash away any pattern

de Olivera, Kagan, Mackey, Nachman, Schwartzman (2016)

BEYOND IMAGES: 4-MOMENTA

- analyses typically have access to more information than energy deposit in the calorimeter: e.g. particle id, tracks, clustering history in a jet, etc.
- build network that take 4-momenta as inputs:
 - clever N-body phase-space parametrisation to maximise information

 Datta, Larkoski (2017)
 - recurrent / recursive neural networks to
 model jet clustering history (using techniques
 borrowed from language recognition)

 Louppe, Cho, Cranmer (2017)

DEEP LEARNING MEETS DEEP THINKING: LUND JET PLANE

- inputs of ML algorithms can be low-level (calorimeter cells/particle 4-momenta) but also higher-level variables
- physics intuition can lead us to construct better representations of a jet: the Lund jet plane
 - de-cluster the jet following the hard branch and record (kt, Δ) at each step
 - feed this representation to a log-likelihood or a ML algorithm

MAPPING OUTTHE LUND PLANE

 ATLAS presented at BOOST 2019 the first experimental measurement of the Lund plane (note the different coordinates)

ATLAS-CONF-2019-035

MAPPING OUTTHE LUND PLANE

- ATLAS presented at BOOST 2019 the first experimental measurement of the Lund plane (note the different coordinates)
- and for the benefit of us theorists they even provided I-D projections

ATLAS-CONF-2019-035

DEEP LEARNING MEETS DEEP THINKING: ENERGY FLOW NET

Observable \mathcal{O}		Мар Ф	Function F	
Mass	m	p^{μ}	$F(x^{\mu}) = \sqrt{x^{\mu}x_{\mu}}$	
Multiplicity	M	1	F(x) = x	
Track Mass	$m_{ m track}$	$p^{\mu}\mathbb{I}_{\mathrm{track}}$	$F(x^{\mu}) = \sqrt{x^{\mu}x_{\mu}}$	
Track Multiplicity	M_{track}	$\mathbb{I}_{ ext{track}}$	F(x) = x	
Jet Charge [72]	\mathcal{Q}_{κ}	$(p_T, Q p_T^{\kappa})$	$F(x,y) = y/x^{\kappa}$	
Eventropy [74]	$z \ln z$	$(p_T, p_T \ln p_T)$	$F(x,y) = y/x - \ln x$	
Momentum Dispersion [93]	p_T^D	(p_T, p_T^2)	$F(x,y) = \sqrt{y/x^2}$	
C parameter [94]	C	$(ec{p} ,ec{p}\otimesec{p}/ ec{p})$	$F(x,Y) = \frac{3}{2x^2} [(\text{Tr } Y)^2 - \text{Tr } Y^2]$	

Komiske, Metodiev, Thaler (2018)

overlay

DEEP LEARNING MEETS DEEP THINKING: ENERGY FLOW NET

ML SURVEY FOR TOP TAGGING

		AUC	Accuracy	$1/\epsilon_B \ (\epsilon_S = 0.3)$	#Parai	meters		
images	CNN [16]	0.981	0.930	780	610k			
images	ResNeXt [32]	0.984	0.936	1140	1.46M			
	TopoDNN [18]	0.972	0.916	290	59k			
£	Multi-body N-subjettiness 6 [24]	0.979	0.922	856	57k	10 ⁵		
four-	Multi-body N-subjettiness 8 [24]	0.981	0.929	860	58k			
mamanta	RecNN	0.981	0.929	810	13k			
momenta	P-CNN	0.980	0.930	760	348k			
	ParticleNet [45]	0.985	0.938	1280	498k	/		
	LBN [19]	0.981	0.931	860	705k	10 ²		
theory-	LoLa [22]	0.980	0.929	730	127k	$\frac{1}{\mathcal{E}_B}$		
theory-	Energy Flow Polynomials [21]	0.980	0.932	380	1k	o		
theory- inspired	Energy Flow Network [23]	0.979	0.927	600	82k	ij		
mapir cd	Particle Flow Network [23]	0.982	0.932	880	82k	rejection		
						<u> </u>		

- all solutions offer big improvement over standard analysis (nsub+m)
- similar performances
- physics intuition useful to match performance of highly-sophisticated architectures

TOWARDS UNDERSTANDING

- ML techniques do bring significant improvement but also many questions
- Theory community (within and outside jet physics) reacted in different ways
- Recently first attempts to "open the black box" have appeared
- Calculable (IRC safe) input allows for (some) first-principle understanding

TOWARDS UNDERSTANDING

- ML techniques do bring significant improvement but also many questions
- Theory community (within and outside jet physics) reacted in different ways
- Recently first attempts to "open the black box" have appeared
- Calculable (IRC safe) input allows for (some) first-principle understanding
- Theory of q/g discrimination studied using N-subjettines variables
- Likelihood ratios, ROC, reducibility factors can be computed
- A bound on the Area Under the Curve can be obtained

$$AUC \ge \frac{\kappa_S + \kappa_B - 2\kappa_S \kappa_B}{2 - \kappa_S \kappa_B} = \left(\frac{C_F}{C_A}\right)^n$$

TOWARDS UNDERSTANDING

- ML techniques do bring significant improvement but also many questions
- Theory community (within and outside jet physics) reacted in different ways
- Recently first attempts to "open the black box" have appeared
- Calculable (IRC safe) input allows for (some) first-principle understanding
- Theory of q/g discrimination studied using N-subjettines variables
- Likelihood ratios, ROC, reducibility factors can be computed
- A bound on the Area Under the Curve can be obtained

$$AUC \ge \frac{\kappa_S + \kappa_B - 2\kappa_S \kappa_B}{2 - \kappa_S \kappa_B} = \left(\frac{C_F}{C_A}\right)^n$$

"a first step in a theoretical effort to deconstruct machine learning for particle physics"

CONCLUSIONS & OUTLOOK

- What is needed to boost sensitivity to Hbb?
- Are traditional tools/approach sufficient or do we need to resort to ML?
- In the context of ML, are we suspicious of black-boxes? Should we?
 - can we move from machine-learning to learning-from-machines? Interpretable neural networks? Prescriptive analytics?
 - can we devise ML learning algorithms that preserve calculability? (jet topics, grooming through reinforcement learning ...)
- What's the best use of first-principle knowledge in jet physics?
 - extraction of SM parameters? PDFs with q/g tagging?
 - jet substructure probes of quark-gluon plasma in heavy ion collisions

(there are links to things I hadn't time to discuss)

CONCLUSIONS & OUTLOOK

- What is needed to boost sensitivity to Hbb?
- Are traditional tools/approach sufficient or do we need to resort to ML?
- In the context of ML, are we suspicious of black-boxes? Should we?
 - can we move from machine-learning to learning-from-machines? Interpretable neural networks? Prescriptive analytics?
 - can we devise ML learning algorithms that preserve calculability? (jet topics, grooming through reinforcement learning ...)
- What's the best use of first-principle knowledge in jet physics?
 - extraction of SM parameters? PDFs with q/g tagging?
 - jet substructure probes of quark-gluon plasma in heavy ion collisions

(there are links to things I hadn't time to discuss)

BACKUP SLIDES

TOP MASS WITH SOFT-DROP JETS

- determination of other fundamental parameters may benefit from grooming, e.g. the top quark mass
- in the context of e⁺e⁻ collisions SCET factorisation theorems allow for a precision-determination of the top-jet mass
- the picture at pp collisions is polluted by wide-angle soft radiation
- grooming "turns" pp observables into e+e- ones

MEASURING THE STRONG COUPLING

- current precision below 1%, dominated by lattice extractions
- LEP event shapes also very precise (5%)
- however they are in tension with the world average
- thrust (and C parameter) known with outstanding accuracy

strong correlation with non-perturbative parameter

SOFT-DROP EVENT SHAPES

- noticeable reduction of non-pert. corrections may allow to disentangle the degeneracy
- can we compute it at the same accuracy as standard event shapes?
- NNLO calculations recently performed Kardos, Somogyi, Trocsanyi (2018)

CS WITH SOFT-DROPTHRUST

- soft-drop allows us to extend the fit range
- Generale question: is there a natural way to define soft-drop event shapes? e.g. bottom-up softdrop

Dreyer, Necib, Soyez, Thaler (2018)
Baron (in preparation)

- fits to pseudo-data generated by SHERPA
- results shows reduced dependence on non-pert.
 corrections
- subleading effects are under investigation

SM, Reichelt, Schumann, Soyez, and Theeuwes (2019)

