

Higgs Decays to Third-Generation Fermions at ATLAS

Pier-Olivier DeViveiros [CERN]

October 1st 2019
Higgs Couplings
Oxford

Motivation

CP Properties in VBF production (ττ final state) covered in Alena Loesle's talk tomorrow afternoon!

- Higgs Boson properties (mass, production rates, spin/CP) are predominantly constrained by measurements of the bosonic decay modes
- * However, Higgs decays to third generation fermions (taus, b-quarks), while experimentally more challenging, offer a unique opportunity to directly probe the Standard Model Yukawa couplings
 - * Such measurements are highly complementary, as they provide important inputs to the global Higgs fits and allow to constrain Beyond the Standard Model phenomena
 - * Both b-jets and hadronically-decaying taus are complex physics objects which require an excellent understanding of both tracking and calorimeter observables, and their combination through the use of multivariate techniques
- * The large dataset provided by Run-II means these measurements are transitioning from the 'observation' regime to 'precision measurements'

Third Generation Decays

2nd generation decays covered in Jan Kretzschmar's talk this afternoon!

Covered in this talk:

- * $H \rightarrow \tau \tau \text{ (BR } \sim 6.3\%)$
 - Presence of neutrinos in the tau decays leads to a degradation in the mass resolution which leads to significant backgrounds from Z sources
 - Large multi-jet induced backgrounds in all channels containing hadronically-decaying taus
- * $H\rightarrow bb$ (BR ~ 58%)
 - Significant multi-jet induced background means that the predominant gluon-gluon fusion production mode cannot be exploited
 - * Requires excellent performance for the identification of b-jets, and precise determination of the associated systematics

The Measurements

$H \rightarrow \tau \tau$ (36 fb⁻¹)

[Phys. Rev. D 99 (2019) 072001]

Measurement Strategy

- * All tau decay combinations are exploited, giving rise to three channels ($\tau_{lep}\tau_{lep}$, $\tau_{lep}\tau_{had}$, $\tau_{had}\tau_{had}$)
- * Analysis targets both *gluon-gluon fusion* and *VBF production* modes through dedicated signal region (SRs) selections

- Dedicated Control Regions (CRs) are defined to control Z→ll and Top contributions
- In total: 13 SRs and 6 CRs

Interlude: ATLAS Tau Performance

* High jet and light-lepton induced **background rejection**, **low p**_T **thresholds**, and good **energy resolution** are crucial ingredients in maximizing sensitivity in channels with hadronically-decaying taus

BDT-based tau identification algorithm

Di-hadronic Tau Trigger With ~40 and 30 GeV offline thresholds Uses topology requirements to control rates

Multivariate Energy Calibration (Particle Flow Inputs)

Dominant Backgrounds

- * **Z+jets production:** Estimated from Sherpa NLO MC simulations (normalization floated in the fit, decorrelated in VBF and boosted phase spaces) Main challenge: Ensuring proper modelling of the recoiling jet system in both high boost and high dijet mass phase space [in-depth scrutiny in dedicated Validation Regions]
- * Misidentified ('fake') taus: Estimated using data-driven methods

 Main challenge: Ensuring the phase space dependencies are well taken into account [Fake-factor & ABCD extrapolation methods]

Fit & Results

Recent MMC studies covered in Krystsina Petukhova's talk this afternoon!

- Simultaneous likelihood fit in all SRs and CRs with both Higgs signal strength and individual gluongluon fusion and VBF production rates as Parameters of Interest
- * Missing Mass Calculator distribution ($m_{\tau\tau}^{\text{MMC}}$) used as the fit variable (uses E_T^{miss} and tau mass/decay kinematics to form neutrino hypotheses [<u>ref.</u>])
- * Combination with Run-I result adds up to single experiment observation (significance of 6.4σ [5.4 exp.])

Results are in agreement with the SM predictions with relative uncertainties of ~16% (stat.) and ~23% (syst.) [~28% total]

Fit & Results

Recent MMC studies covered in Krystsina Petukhova's talk this afternoon!

- Simultaneous likelihood fit in all SRs and CRs with both Higgs signal strength and individual gluongluon fusion and VBF production rates as Parameters of Interest
- * Missing Mass Calculator distribution ($m_{\tau\tau}^{\text{MMC}}$) used as the fit variable (uses E_T^{miss} and tau mass/decay kinematics to form neutrino hypotheses [<u>ref.</u>])
- * Combination with Run-I result adds up to single experiment observation (significance of 6.4σ [5.4 exp.])

 \sim 51% (VBF) and \sim 61% (ggF)

Uncertainties

* Systematic uncertainties are a significant component of the total uncertainty

Source of uncertainty	Impact $\Delta \sigma / \sigma_{H \to \tau\tau}$ [%]	
	Observed	
Theoretical uncert. in signal	+13.4 / -8.7	+12.0 / -7.8
Background statistics	+10.8 / -9.9	+10.1 / -9.7
Jets and $E_{\rm T}^{\rm miss}$	+11.2 / -9.1	+10.4 / -8.4
Background normalization	+6.3 / -4.4	+6.3 / -4.4
Misidentified $ au$	+4.5 / -4.2	+3.4 / -3.2
Theoretical uncert. in background	+4.6 / -3.6	+5.0 / -4.0
Hadronic τ decays	+4.4 / -2.9	+5.5 / -4.0
Flavor tagging	+3.4 / -3.4	+3.0 / -2.3
Luminosity	+3.3 / -2.4	+3.1 / -2.2
Electrons and muons	+1.2 / -0.9	+1.1 / -0.8
Total systematic uncert.	+23 / -20	+22 / -19
Data statistics	±16	±15
Total	+28 / -25	+27 / -24

Dominant Effects:

ggF Higgs production rate in boosted regime
Statistics of MC Samples

Effect of JES/JER on acceptance and MMC shape

 $H \rightarrow bb$ (80 fb⁻¹)

[Phys. Lett. B 786 (2018) 59] [JHEP 05 (2019) 141]

Measurement Strategy

More details in Giulia Di Gregorio's presentation this afternoon!

- * Focus on VH production mode to control backgrounds
 - Dedicated VBF search released in 2018 with 30 fb⁻¹ [Phys. Rev. D 98 (2018) 052003]
- Analysis is split into 3 channels based on the number of light leptons:
 ZH→vvbb (0-lepton), WH→lvbb (1-lepton), ZH→llbb (2-leptons)
 - * Additional separation based on number of additional non-b-jets (0, 1+)
- * Template fit in multivariate discriminant distribution is used to extract VH signal
 - Fit using alternative discriminant also used to extract VZ(→bb)
 contribution
- * Event selection relies on large p_T^V requirement to improve signal to background ratio $p_T^V > 150 \text{ GeV}$ (all channels) 75 GeV < $p_T^V < 150 \text{ GeV}$ (extra bin for the 2-lepton channel)

Interlude: ATLAS B-Tagging Performance

Rejection of light-flavour and c-jets and precise measurements of the tagging algorithm performance are the crucial ingredients for this analysis

Tagging efficiency measurement in tt events

BDT-based b-tagger lightflavour jet rejection

ATLAS Simulation

Jet $p_{-} \ge 20$ GeV, $|\eta| \le 2.5$

√s = 13 TeV. tt

0.6

Light flavour mistag rate measurement in data

Working point used in analysis:

b-jet efficiency: ~70%

c-jet mis-ID efficiency: ~12.5%

light-flavour mis-ID efficiency: ~0.3%

0.7

8.0

0.9

b-jet tagging efficiency

Dominant Backgrounds

- * Main backgrounds from processes involving W and Z bosons decaying to leptons (di-bosons, V+jets, top quark processes):
 - Templates taken from MC simulation at NLO
 - * Dedicated Control Regions established to isolate **W+heavy flavour** (1-lepton with m_{bb} < 75 GeV & m_{Top} > 225 GeV) and **Top** processes (2-lepton e μ)
- * Multijet background (1-lepton region only, negligible otherwise):
 - ❖ Data-driven: Fit to m_T(W) distribution, multi-jet template from an inverted lepton isolation region

Bonus: WZ & ZZ

- * Full fit is performed, using the alternative discriminant trained to identify $VZ(\rightarrow bb)$
 - Offers an extra handle in validating the results of the main analysis!

Fit & Results

ttH results covered in Peter Onyisi's talk this afternoon!

- ♦ Simultaneous fit to all SRs and CRs to extract H→bb signal strength
- * Combination performed with Run-I and ttH/VBF H \rightarrow bb yields a single experiment observation at an observed (expected) significance of 5.4 σ (5.5 σ)
- * Combination with VH $\rightarrow \chi \chi$ and VH $\rightarrow ZZ$ also yields an observation of VH production at 5.3 σ [4.8 σ exp.]

- ♦ Simultaneous fit to all SRs and CRs to extract H→bb signal strength
- * Combination performed with Run-I and ttH/VBF H \rightarrow bb yields a single experiment observation at an observed (expected) significance of 5.4 σ (5.5 σ)
- * Combination with VH $\rightarrow \chi \chi$ and VH $\rightarrow ZZ$ also yields an observation of VH production at 5.3 σ [4.8 σ exp.]

Uncertainties

♦ H→bb analysis in a regime where systematic uncertainties are becoming

dominant...

Source of uncerta	inty	σ_{μ}
Total		0.259
Statistical		0.161
Systematic		0.203
Experimental und	ertainties	
Jets		0.035
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.014
Leptons		0.009
	<i>b</i> -jets	0.061
b-tagging	c-jets	0.042
	light-flavour jets	0.009
	extrapolation	0.008
Pile-up		0.007
Luminosity		0.023
Theoretical and n	nodelling uncertainties	
Signal		0.094
Floating normalis	ations	0.035
Z + jets		0.055
W + jets		0.060
tt		0.050
Single top quark		0.028
Diboson		0.054
Multi-jet		0.005
MC statistical		0.070

Dominant Effects:

b-tagging performance measurements

Signal Acceptance Uncertainties

Background Modelling Statistics of MC Samples

The Interpretations

Simplified Template Cross Sections

- The Simplified Template Cross Section (STXS) framework offers a unified methodology to perform fiducial/differential cross section measurements
 - * Bins in phase space defined in a consistent manner across all channels, simplifies combinations and theory interpretations significantly
- * Stage 0: Per production mode cross sections (with ~detector acceptance)
- Stage 1: Targeting specific areas of phase space (reduce theory dependences)

STXS in $H \rightarrow \tau \tau$

- * The precision level of the analysis is only sufficient to extract results in a few bins (multiple Stage 1 bins merged together)
 - * ...but this is still a very useful exercise in understanding the available sensitivity!
 - Unfortunate mismatch between STXS and analysis binning in Higgs p_T artificially reduces sensitivity

This is still one of the more precise measurements of the very high Higgs p_T regime (>120 GeV) (~60% relative total uncertainty)

STXS in H→bb

- ♦ STXS interpretation in H→bb is more complex: multi-variate discriminant shape depends strongly on the Higgs kinematics (new templates introduced)
 - * Binning defined based on p_T^V (2 schemes considered, 3 & 5 bins)
 - * Extra granularity not originally included in STXS proposal used here to reduce extrapolation uncertainties (introduction of a bin starting at $p_T^V > 75$ GeV)

EFT in H→bb

- * The STXS results of the H→bb measurement can also be re-interpreted in a generic Effective Field Theory (EFT) framework, to set limits on BSM interactions
- Probe all dimension 6 operators which would affect the analysis results
 - Either through modifications to WH/ZH couplings, or in down-quark Yukawa interactions

Conclusions

- * Higgs decays into both 3rd generation fermions have now been observed in ATLAS (>5σ in both cases)
 - Measurements are in good agreement with the Standard Model predictions!
- * Both channels have begun extracting *fiducial cross-sections* through the STXS framework, providing sensitivity in the parts of phase space they are uniquely sensitive to
- * Still a significant fraction of the Run-II luminosity not included in these measurements stay tuned!

The impact of these measurements on the full ATLAS Higgs combination will be shown in Nicolas Berger's presentation tomorrow morning!

