

Introduction

Run 2: focus on increasingly precise measurements of Higgs couplings:

ATLAS Run 1

Eur. Phys. J. C (2016) 76:6

$$\mu = 1.18 { +0.15 \atop -0.14}$$

ATLAS Run 2 (2018 results)

ATLAS-CONF-2018-031

$$\mu = 1.13 {+0.09 \atop -0.08}$$

- ⊕ Better constraints on BSM models (predict ≤10% level couplings deviations)
- Stronger constraints from now-established subdominant modes:
 - **ttH**, **VH** and $H\rightarrow bb$ now above 5 σ for both ATLAS and CMS
 - ⇒ Combination all the more important to obtain best constraints
- ⊖ Systematics play increasingly important role
- ⇒ Focus on measurement frameworks giving low theory systematics, in particular differential measurements.

Introduction

Run 2: focus on increasingly precise measurements of Higgs couplings:

ATLAS Run 1 Eur. Phys. J. C (2016) 76:6 $\mu = 1.18 \pm 0.10 \text{ (stat)} \pm 0.07 \text{ (exp)} + 0.08 -0.07 \text{ (theo)}$ ATLAS Run 2 (2018 results) $\mu = 1.13 \pm 0.05 \text{ (stat)} \pm 0.05 \text{ (exp)} + 0.06 -0.05 \text{ (theo)}$ ATLAS-CONF-2018-031

- ⊕ Better constraints on BSM models (predict ≤10% level couplings deviations)
- Stronger constraints from now-established subdominant modes:
 - **ttH**, **VH** and $H\rightarrow bb$ now above 5 σ for both ATLAS and CMS
 - → Combination all the more important to obtain best constraints
- ⊖ Systematics play increasingly important role
- ⇒ Focus on measurement frameworks giving low theory systematics, in particular differential measurements.

Included results is not the most recent.New since last combination.

Analyses mostly using the 2015-2017 (~80 fb⁻¹) or 2015-2016 (~36 fb⁻¹) datasets.

		L (fb ⁻¹)	ggF	VBF	VH	ttH	
H→γγ ATLAS-CONF-2018-028		80	✓	✓		✓	
$H \rightarrow ZZ^* \rightarrow 4I$ ATLAS-CONF-2018-018		80	✓	✓	✓	✓	
H→WW*→ evµv PLB 789 (2019) 508		36	√	√	Not yet included	7	ttH→ leptons PRD 97 (2018) 072003
H→ττ PRD 99 (2019) 072001		36	✓	✓		<u> </u>	
H→bb JHEP 05 (2019) 141		80		✓			PRD 97 (2018) 072016
H→µµ ATLAS-CONF-2018-026	Not included in all results	80	✓	✓			VBF H→bb PRD 98 (2018) 052003
H→invisible PRL 122 (2019) 231801	Not included in all results	24-30		✓	✓		
Off-shell H*→ZZ PLB 786 (2018) 223	Not included in all results	36	Prov	ides con	straint on	Гн	4

Included results is not the most recent. New since last combination.

Analyses mostly using the 2015-2017 (~80 fb⁻¹) or 2015-2016 (~36 fb⁻¹) datasets.

PLB 786 (2018) 223

Included results is not the most recent. New since last combination.

Analyses mostly using the 2015-2017 (~80 fb⁻¹) or 2015-2016 (~36 fb⁻¹) datasets.

Signal-strength and crosssection measurements

Measurements of μ & production cross-sections

1909.02845

Parameterize all Higgs signal rates using a single **signal strength** μ :

$$\mu = 1.11^{+0.09}_{-0.08} = 1.11 \pm 0.05 \text{ (stat.)} ^{+0.05}_{-0.04} \text{ (exp.)} ^{+0.05}_{-0.04} \text{ (sig. th.)} \pm 0.03 \text{ (bkg. th.)}$$

Systematics ~ 1.5 × Stat uncertainty, Theory systs. ≥ Experimental systs.

Reduce theory dependence: measure cross-sections:

σ_{prod} for main modes, BRs fixed to SM:

Normalize to $\sigma^{zz^*}_{ggF}$, measure ratios

Stat ~ Syst, All results in good agreement with the SM

Simplified Template Cross-sections (STXS)

Bin Higgs production in $|y_H| < 2.5$ by initial state, associated jets/W/Z + kinematics.

Default modeling for main input analyses Here use **Stage 1** (YR4, Ch. III.2)

- Provides differential information
- Better control over theory uncertainties
- Can be measured in all decay modes
- ⇒ Suitable for global combinations
- ⊖ No Higgs decay information

Simplified Template Cross-sections

Bin Higgs production in $|y_H| < 2.5$ by initial state, associated jets/W/Z + kinematics.

Default modeling for main input analyses Here based on **Stage 1** (YR4, Ch. III.2)

- Provides differential information
- Better control over theory uncertainties
- Can be measured in all decay modes
- ⇒ Suitable for global combinations
- ⊖ No Higgs decay information

Simplified Template Cross-sections

See ATL-PHYS-PUB-2018-035 and the talk by T. Calvet yesterday

Bin Higgs production in $|y_H| < 2.5$ by initial state, associated jets/W/Z + kinematics.

Default modeling for main input analyses Here based on **Stage 1** (YR4, Ch. III.2)

- Provides differential information
- Better control over theory uncertainties
- Can be measured in all decay modes
- ⇒ Suitable for global combinations
- ⊖ No Higgs decay information

STXS Merging scheme

Not (yet) sensitive to all Stage-1 bins ⇒ merge

Only for bins with very low sensitivity (rel. unc. > 100%) or large (anti-)correlations

STXS Measurements

- Differential measurements in gg→H and pp→VH
- \rightarrow Bins at high $p_T^{H,V}$ sensitive to BSM
- Stat unc. > Syst almost everywhere
- Excellent agreement with SM

Measurements also provided with finer binning for reinterpretations

STXS Measurements ATLAS Stat. Syst. Total +0.12 +0.07 B_{yy}/B_{zz} \sqrt{s} = 13 TeV, 36.1 - 79.8 fb⁻¹ -0.12-0.06+0.22 +0.27 $B_{b\overline{b}}/B_{ZZ}$. $m_H = 125.09 \text{ GeV}, |y_{LI}| < 2.5$ -0.18B_{ww*}/B₂₂, $gg \rightarrow H$ $p_{\rm SM}$ = 89% $qq \rightarrow Hqq$ -0.160.11, +0.22 +0.19 $B_{\tau\tau}/B_{77}$ \sqrt{s} = 13 TeV, 36.1 - 79.8 fb **ATLAS** $m_H = 125.09 \text{ GeV}, |y_H| < 2.5$ Total Stat. Syst. 0.8 X -0.27 0.18 0.18 0.00 0.22 0.32 0.03 -0.01 0.15 0.12 0.03 0.08 0.12 0.33 -0.52 -0.17 -0.50 -0.25 +0.18 +0.16 +0.09 -0.08-0.17 -0.08 0.07 -0.01:-0.02 -0.01 0.04:0.00 0.01:0.01 0.00 0.02:0.04:-0.06 -0.02 -0.05 -0.01 +0.37 +0.23 +0.18 20 GeV 0.6 +0.39 200 GeV 0.4 +0.32 GeV GeV 0.2 0 +0.32 -0.2-0.4ttH + tH -0.6-0.8Dif gg GeV -0.70 \rightarrow Bi $qq \rightarrow Hl v$: gg/qq → HI

Excellent agreement with SM

Star unc. > sysramosi everywnere

Measurements also provided with finer binning for reinterpretations

Parameter normalized to SM value

Estimate using "BLUE weights"

$$w_i = \frac{1/\sigma_i^2}{\sum_{i} 1/\sigma_j^2}$$

gg→ H:

- Mainly \(\gamma \) and ZZ
- WW mainly at low N_{jets}.
- ττ at high p_τ^H

qq→Hqq:

- γγ, WW in VBF-like region
- ττ at high p_T^H

pp→VH: mostly VH→bb

ttH: mostly γγ and multileptons

к framework

Multiplicative coupling corrections, framework based on LO diagrams.

			Effective	
Production	Loops	Interference		Resolved modifier
	8273		modifier	
$\sigma({ m ggF})$	\checkmark	t-b	κ_g^2	$1.04 \kappa_t^2 + 0.002 \kappa_b^2 - 0.04 \kappa_t \kappa_b$
$\sigma({\rm VBF})$	-	-	-	$0.73 \kappa_W^2 + 0.27 \kappa_Z^2$
$\sigma(qq/qg\to ZH)$	-	-	-	κ_Z^2
$\sigma(gg\to ZH)$	\checkmark	t-Z	K(ggZH)	$2.46 \kappa_Z^2 + 0.46 \kappa_t^2 - 1.90 \kappa_Z \kappa_t$
$\sigma(WH)$	-	-	-0	κ_W^2
$\sigma(t\bar{t}H)$	-	-	-	κ_t^2
$\sigma(tHW)$	-	t-W		$2.91 \kappa_t^2 + 2.31 \kappa_W^2 - 4.22 \kappa_t \kappa_W$
$\sigma(tHq)$	-	t– W	-	$2.63 \kappa_t^2 + 3.58 \kappa_W^2 - 5.21 \kappa_t \kappa_W$
$\sigma(b\bar{b}H)$	-	=	=	κ_b^2
Partial decay width	l I			
Γ^{bb}	-			κ_b^2

Partial decay width	ı			
Γ^{bb}	-	-		κ_b^2
Γ^{WW}			-8	κ_W^2
Γ^{gg}	\checkmark	t-b	κ_g^2	$1.11 \kappa_t^2 + 0.01 \kappa_b^2 - 0.12 \kappa_t \kappa_b$
$\Gamma^{ au au}$	-	-		$\kappa_{ au}^2$
Γ^{ZZ}	-	-		κ_Z^2
Γ^{cc}	-	-		$\kappa_c^2 (= \kappa_t^2)$
$\Gamma^{\gamma\gamma}$	\checkmark	t-W	κ_{γ}^2	$1.59 \kappa_W^2 + 0.07 \kappa_t^2 - 0.67 \kappa_W \kappa_t$
$\Gamma^{Z\gamma}$	\checkmark	t-W	$\kappa_{(Z\gamma)}^2$	$1.12\kappa_W^2-0.12\kappa_W\kappa_t$
Γ^{ss}	-	-	-	$\kappa_s^2 (= \kappa_b^2)$
$\Gamma^{\mu\mu}$	-	-	-9	κ_{μ}^2

Loop diagrams can be either:

- Resolved to their SM structure, or
- Treated as effective vertices

к measurements with no other BSM effects

Higgs width Γ_{H} not directly accessible using on-shell measurements

⇒ Propagate effect of ks, assume no other BSM effects.

Assume SM structure for the loops.

		<u>_</u>
Parameter	Result	ΕĮ
κ_Z	1.10 ± 0.08	±8% on gauge
κ_W	1.05 ± 0.08	boson couplings
κ_b	$1.06 {}^{+\ 0.19}_{-\ 0.18}$	±10-20% on 3 rd
κ_t	$1.02 {}^{+\ 0.11}_{-\ 0.10}$	generation fermion
$K_{\mathcal{T}}$	1.07 ± 0.15	couplings
κ_{μ}	< 1.53 at 95% C	

 $H \rightarrow \mu\mu$ analysis included to constrain κ_{μ} .

ATLAS $\sqrt{s} = 13 \text{ TeV}, 24.5 - 79.8 \text{ fb}^{-1}$

 $m_H = 125.09 \text{ GeV}, |y_H| < 2.5, p_{_{\rm SM}} = 78\%$

Excellent agreement with SM

к measurements with no other BSM effects

Higgs width Γ_{H} not directly accessible using on-shell measurements

⇒ Propagate effect of ks, assume no other BSM effects.

Excellent agreement with SM

Particle mass [GeV]

BSM interpretations: 2HDM

Reinterpret κ_{v} , κ_{d} , κ_{d} , κ_{d} , κ_{d} measurements in the context of 2HDM models

· · · · · · · · · · · · · · · · · · ·	Coupling scale factor		Type I	Type II	Lepton-specific	Flipped		
Coupling to W, Z bosons	→	κ_V		sin()	$(\beta - \alpha)$			
Coupling to up-type quarks	->	κ_u	$\cos(\alpha)/\sin(\beta)$					
Coupling to down-type quarks—	-	κ_d	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$		
Coupling to leptons	→	κ_ℓ	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$		

Measurements favor *Alignment* region ⇒ SM-like light h^o boson

BSM interpretations: hMSSM

\Rightarrow Exclude m_A \lesssim 500 GeV at 95% CL

$$\kappa_{V} = \frac{s_{d}(m_{A}, \tan\beta) + \tan\beta \ s_{u}(m_{A}, \tan\beta)}{\sqrt{1 + \tan^{2}\beta}}$$

$$\kappa_{u} = s_{u}(m_{A}, \tan\beta) \frac{\sqrt{1 + \tan^{2}\beta}}{\tan\beta}$$

$$\kappa_{d} = s_{d}(m_{A}, \tan\beta) \sqrt{1 + \tan^{2}\beta} ,$$

$$s_{u} = \frac{1}{\sqrt{1 + \frac{(m_{A}^{2} + m_{Z}^{2})^{2} \tan^{2}\beta}{(m_{Z}^{2} + m_{A}^{2} \tan^{2}\beta - m_{h}^{2}(1 + \tan^{2}\beta))^{2}}}}$$

$$s_{d} = \frac{(m_{A}^{2} + m_{Z}^{2}) \tan\beta}{m_{Z}^{2} + m_{A}^{2} \tan^{2}\beta - m_{h}^{2}(1 + \tan^{2}\beta)} s_{u}$$

κ measurements with BSM effects in Γ_{H} and loops

$\Gamma_{\!\scriptscriptstyle H}$ affected by:

• к parameters

$$\sigma^{\text{on}}(i \rightarrow H \rightarrow j) \sim \frac{\kappa_i^2 \kappa_f^2}{\Gamma_H(\kappa, B_{\text{inv}}, B_{\text{undet}})}$$

this afternoon

- H→invisible decays (B_{inv})
 - → B_{inv} accessible through H→invisible
 searches (MET signature)
 Talk by C. Sander

Decays to final states not measured (B_{undet})

- B_{undet} bounded through assuming
 B_{undet} > 0 and κ_V ≤ 1
- $B_{BSM} = B_{undet} + B_{inv}$ bounded by off-shell

H*
$$\rightarrow$$
 ZZ measurements, assuming $\kappa_{\text{off}} = \kappa_{\text{on}}$. $\sigma^{\text{off}}(i \rightarrow H^* \rightarrow j) \sim \kappa_{i, \text{off}}^2 \kappa_{f, \text{off}}^2$

All measurements compatible with SM

$$K_{V} \le 1$$
: $B_{inv} < 30\%$, $B_{undet} < 21\%$ at 95% CL

κ measurements with BSM effects in Γ_{H} and loops

$\Gamma_{\rm H}$ affected by:

• к parameters

$$\sigma^{\text{on}}(i \rightarrow H \rightarrow j) \sim \frac{\kappa_i^2 \kappa_f^2}{\Gamma_H(\kappa, B_{\text{inv}}, B_{\text{undet}})}$$

- H→invisible decays (B_{inv})
 - → B_{inv} accessible through H→invisible searches (MET signature)

 Talk by C. S

Talk by C. Sander this afternoon

- Decays to final states not measured (B_{undet})
 - B_{undet} bounded through assuming
 B_{undet} > 0 and κ_V ≤ 1
 - $B_{BSM} = B_{undet} + B_{inv}$ bounded by off-shell

H*
$$\rightarrow$$
 ZZ measurements, assuming $\kappa_{\text{off}} = \kappa_{\text{on}}$. $\sigma^{\text{off}}(i \rightarrow H^* \rightarrow j) \sim \kappa_{i, \text{off}}^2 \kappa_{f, \text{off}}^2$

All measurements compatible with SM

$$K_{V} \le 1$$
: $B_{inv} < 30\%$, $B_{undet} < 21\%$ at 95% CL

κ measurements with BSM effects in Γ_{μ} and loops

EFT Framework

κ model not consistent beyond LO \Rightarrow not suited to precision measurements

⇒ Parameterize BSM physics using an EFT extension of the SM

$$L = L_{SM}^{(d \le 4)} + \frac{1}{\Lambda^2} \sum_{i} c_{i}^{(d=6)} O_{i}^{(d=6)} + \frac{1}{\Lambda^4} \sum_{i} c_{i}^{(d=8)} O_{i}^{(d=8)} + \dots$$

In this talk: constraints on a subset of d=6 operators in the SILH basis implemented in the HEL model within MG5_aMC@NLO, $\Lambda = 1$ TeV

к-like modifications but also allows modifications of kinematics (measured in STXS kinematic bins), e.g.

$$O_{HW}=i(D^\mu H)^\dagger\sigma^i(D^\nu H)W^i_{\mu\nu} \qquad \stackrel{^{^H}}{-}-\stackrel{^{^U}}{-}-\stackrel{$$

VH→bb EFT parameterization

Consider **5 HEL operators** (CP-even only)
Parameterizations from
LHCHXSWG-INT-2017-001

$$O_{HW} = i (D^{\mu}H)^{\dagger} \sigma^{a} (D^{\nu}H) W_{\mu\nu}^{a},$$

$$O_{HB} = i (D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu},$$

$$O_{B} = \frac{i}{2} \left(H^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu}.$$

$$O_{W} = \frac{i}{2} \left(H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^{a},$$

$$O_{d} = y_{d} |H|^{2} \bar{Q}_{L} H d_{R}$$

Input from STXS Stage 1 measurements in 5 merged bins Focus on high- p_{τ}^{\vee} region: higher sensitivity to operators above

Details in G. Di Gregorio's talk yesterday

VH→bb EFT Results

Scan each parameter in turn, assuming others are 0 as in the SM.

Coefficient	Expected interval	Observed interval
\bar{c}_{HW}	[-0.003, 0.002]	[-0.001, 0.004]
\bar{c}_{HB}	[-0.066, 0.013]	$[-0.078, -0.055] \cup [0.005, 0.019]$
$\bar{c}_W - \bar{c}_B$	[-0.006, 0.005]	[-0.002, 0.007]
\bar{c}_d	[-1.5, 0.3]	$[-1.6, -0.9] \cup [-0.3, 0.4]$

Orthogonal combination strongly constrained by Precision EW measurements.

EFT Interpretation of the $H \rightarrow \gamma \gamma$ differential XS analysis

Reinterpret differential fiducial cross-sections measured in H→yy

Details in D. Börner's talk yesterday and L. Ma's talk tomorrow

HEL Operators Considered:

(Results also provided in SMEFT basis)

ATLAS-CONF-2019-029

Consider $\bar{c}_{HW} = \bar{c}_{HB}$ and $\tilde{c}_{HW} = \tilde{c}_{HB}$ only to avoid too-large $H \rightarrow Z\gamma$ rates

Conclusion

- Precise coupling results from the combined measurement of Higgs crosssection properties using up to ~80 fb⁻¹ of Run 2 data
- Cross-section results reported in the STXS Stage 1 framework providing finegrained measurements of Higgs production
- Higgs couplings reported in the κ framework already used in Run 1
- Recent emphasis on EFT interpretations, in particular using
 - STXS VH→bb results
 - H→γγ differential fiducial cross-section measurements
- Most of these results use only a fraction of the full Run 2 dataset: more precise measurements are still ahead – especially if experimental and theory systematics continue to improve.

Analysis	Dataset	Integrated luminosity [fb ⁻¹]
$H \to \gamma \gamma \text{ (including } t\bar{t}H, H \to \gamma \gamma \text{)}$		79.8
$H \rightarrow ZZ^* \rightarrow 4\ell$ (including $t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell$)	2015 2017	79.8
$VH, H \rightarrow b\bar{b}$	2015–2017	79.8
$H \to \mu\mu$		79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$		36.1
H o au au		36.1
VBF, $H \rightarrow b\bar{b}$	2015 2016	24.5 - 30.6
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	2015–2016	36.1
$H \rightarrow \text{invisible}$		36.1
Off-shell $H \to ZZ^* \to 4\ell$ and $H \to ZZ^* \to 2\ell 2\nu$		36.1

Previous combination (ATLAS-CONF-2018-031)

Analysis	Integrated luminosity (fb ⁻¹)
$H \to \gamma \gamma \text{ (including } t\bar{t}H, H \to \gamma \gamma \text{)}$	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell$ (including $t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell$)	79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
H o au au	36.1
$VH, H \rightarrow b\bar{b}$	36.1
$H \rightarrow \mu\mu$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1

Categories

	$H \rightarrow \gamma \gamma$	$H \rightarrow ZZ^*$	$H \to WW^*$	H o au au	$H o b ar{b}$
tīH	$t\bar{t}H$ leptonic (3 categories) $t\bar{t}H$ hadronic (4 categories)	$t\bar{t}H$ multilepton 1 ℓ + 2 τ_{had} $t\bar{t}H$ multilepton 2 opposite-sign $t\bar{t}H$ multilepton 2 same-sign ℓ ($t\bar{t}H$ multilepton 3 ℓ (categories $t\bar{t}H$ multilepton 4 ℓ (except $H-t\bar{t}H$ leptonic, $H \to ZZ^* \to 4\ell$ $t\bar{t}H$ hadronic, $H \to ZZ^* \to 4\ell$	$t\bar{t}H$ 1 ℓ , boosted $t\bar{t}H$ 1 ℓ , resolved (11 categories) $t\bar{t}H$ 2 ℓ (7 categories)		
VH	$VH\ 2\ \ell$ $VH\ 1\ \ell, p_{\mathrm{T}}^{\ell+E_{\mathrm{T}}^{\mathrm{miss}}} \geq 150\ \mathrm{GeV}$ $VH\ 1\ \ell, p_{\mathrm{T}}^{\ell+E_{\mathrm{T}}^{\mathrm{miss}}} < 150\ \mathrm{GeV}$ $VH\ E_{\mathrm{T}}^{\mathrm{miss}}, E_{\mathrm{T}}^{\mathrm{miss}} \geq 150\ \mathrm{GeV}$ $VH\ E_{\mathrm{T}}^{\mathrm{miss}}, E_{\mathrm{T}}^{\mathrm{miss}} < 150\ \mathrm{GeV}$ $VH+\mathrm{VBF}\ p_{\mathrm{T}}^{j\ l} \geq 200\ \mathrm{GeV}$ $VH\ \mathrm{hadronic}\ (2\ \mathrm{categories})$	VH leptonic $0\text{-jet, }p_{\mathrm{T}}^{4\ell}\geq 100~\mathrm{GeV}$ $2\text{-jet, }m_{jj}<120~\mathrm{GeV}$			$2 \ell, 75 \le p_{\mathrm{T}}^{V} < 150 \text{ GeV}, N_{\mathrm{jets}} = 2$ $2 \ell, 75 \le p_{\mathrm{T}}^{V} < 150 \text{ GeV}, N_{\mathrm{jets}} \ge 3$ $2 \ell, p_{\mathrm{T}}^{V} \ge 150 \text{ GeV}, N_{\mathrm{jets}} \ge 3$ $2 \ell, p_{\mathrm{T}}^{V} \ge 150 \text{ GeV}, N_{\mathrm{jets}} \ge 2$ $2 \ell, p_{\mathrm{T}}^{V} \ge 150 \text{ GeV}, N_{\mathrm{jets}} \ge 3$ $1 \ell p_{\mathrm{T}}^{V} \ge 150 \text{ GeV}, N_{\mathrm{jets}} = 2$ $1 \ell p_{\mathrm{T}}^{V} \ge 150 \text{ GeV}, N_{\mathrm{jets}} = 3$ $0 \ell, p_{\mathrm{T}}^{V} \ge 150 \text{ GeV}, N_{\mathrm{jets}} = 2$ $0 \ell, p_{\mathrm{T}}^{V} \ge 150 \text{ GeV}, N_{\mathrm{jets}} = 3$
VBF	VBF, $p_{\rm T}^{\gamma\gamma jj} \ge 25$ GeV (2 categories) VBF, $p_{\rm T}^{\gamma\gamma jj} < 25$ GeV (2 categories)	2-jet VBF, $p_{\text{T}}^{j1} \ge 200 \text{ GeV}$ 2-jet VBF, $p_{\text{T}}^{j1} < 200 \text{ GeV}$	2-jet VBF	VBF $p_{\mathrm{T}}^{\tau\tau} > 140 \text{ GeV}$ $(\tau_{\mathrm{had}}\tau_{\mathrm{had}} \text{ only})$ VBF high- m_{jj} VBF low- m_{jj}	VBF, two central jets VBF, four central jets VBF+γ
ggF	2-jet, $p_{T}^{\gamma\gamma} \ge 200 \text{ GeV}$ 2-jet, $120 \text{ GeV} \le p_{T}^{\gamma\gamma} < 200 \text{ GeV}$ 2-jet, $60 \text{ GeV} \le p_{T}^{\gamma\gamma} < 120 \text{ GeV}$ 2-jet, $p_{T}^{\gamma\gamma} < 60 \text{ GeV}$ 1-jet, $p_{T}^{\gamma\gamma} \ge 200 \text{ GeV}$ 1-jet, $120 \text{ GeV} \le p_{T}^{\gamma\gamma} < 200 \text{ GeV}$ 1-jet, $60 \text{ GeV} \le p_{T}^{\gamma\gamma} < 120 \text{ GeV}$ 1-jet, $p_{T}^{\gamma\gamma} < 60 \text{ GeV}$ 0-jet (2 categories)	1-jet, $p_{\rm T}^{4\ell} \ge 120~{\rm GeV}$ 1-jet, $60~{\rm GeV} \le p_{\rm T}^{4\ell} < 120~{\rm GeV}$ 1-jet, $p_{\rm T}^{4\ell} < 60~{\rm GeV}$ 0-jet, $p_{\rm T}^{4\ell} < 100~{\rm GeV}$	1-jet, $m_{\ell\ell} < 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} < 20 \text{ GeV}$ 1-jet, $m_{\ell\ell} < 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$ 1-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} < 20 \text{ GeV}$ 1-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$ 1-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$ 0-jet, $m_{\ell\ell} < 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} < 20 \text{ GeV}$ 0-jet, $m_{\ell\ell} < 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$ 0-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$ 0-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$	Boosted, $p_{\mathrm{T}}^{\tau\tau} > 140 \text{ GeV}$ Boosted, $p_{\mathrm{T}}^{\tau\tau} \leq 140 \text{ GeV}$	

5XS Results

Process	Value	lue Uncertainty [pb]					SM pred.	Significance
$(y_H <2.5)$	[pb]	Total	Stat.	Exp.	Sig. th.	Bkg. th.	[pb]	obs. (exp.)
ggF	46.5	± 4.0	± 3.1	± 2.2	± 0.9	± 1.3	44.7 ± 2.2	-
VBF	4.25	+ 0.84 - 0.77	+ 0.63 - 0.60	+ 0.35 - 0.32	+ 0.42 - 0.32	+ 0.14 - 0.11	3.515 ± 0.075	6.5 (5.3)
WH	1.57	+ 0.48 - 0.46	+ 0.34 - 0.33	+ 0.25 - 0.24	+ 0.11 - 0.07	± 0.20	1.204 ± 0.024	3.5(2.7) $5.3(4.7)$
ZH	0.84	+ 0.25 - 0.23	± 0.19	± 0.09	+ 0.07 - 0.04	± 0.10	$0.797 {}^{+\ 0.033}_{-\ 0.026}$	$3.6 (3.6)$ $\int_{0.00}^{0.00} 3.5 (4.7)$
ttH+tH	0.71	+ 0.15 - 0.14	± 0.10	+ 0.07 - 0.06	+ 0.05 - 0.04	+ 0.08 - 0.07	$0.586 ^{+\ 0.034}_{-\ 0.049}$	5.8 (5.4)

Uncertainties on μ

Uncertainty source	$\Delta\mu/\mu$ [%]
Statistical uncertainty	4.4
Systematic uncertainties	6.2
Theory uncertainties	4.8
Signal	4.2
Background	2.6
Experimental uncertainties (excl. MC stat.)	4.1
Luminosity	2.0
Background modeling	1.6
Jets, $E_{ m T}^{ m miss}$	1.4
Flavor tagging	1.1
Electrons, photons	2.2
Muons	0.2
au-lepton	0.4
Other	1.6
MC statistical uncertainty	1.7
Total uncertainty	7.6

Uncertainties on σ_{prod}

Uncertainty source	$rac{\Delta \sigma_{ m ggF}}{\sigma_{ m ggF}} [\%]$	$rac{\Delta\sigma_{\mathrm{VBF}}}{\sigma_{\mathrm{VBF}}}$ [%]	$\frac{\Delta\sigma_{WH}}{\sigma_{WH}}$ [%]	$\frac{\Delta \sigma_{ZH}}{\sigma_{ZH}}$ [%]	$\frac{\Delta \sigma_{t\bar{t}H+tH}}{\sigma_{t\bar{t}H+tH}}$ [%]
Statistical uncertainties	6.4	15	21	23	14
Systematic uncertainties	6.2	12	22	17	15
Theory uncertainties	3.4	9.2	14	14	12
Signal	2.0	8.7	5.8	6.7	6.3
Background	2.7	3.0	13	12	10
Experimental uncertainties (excl. MC stat.)	5.0	6.5	9.9	9.6	9.2
Luminosity	2.1	1.8	1.8	1.8	3.1
Background modeling	2.5	2.2	4.7	2.9	5.7
Jets, $E_{\mathrm{T}}^{\mathrm{miss}}$	0.9	5.4	3.0	3.3	4.0
Flavor tagging	0.9	1.3	7.9	8.0	1.8
Electrons, photons	2.5	1.7	1.8	1.5	3.8
Muons	0.4	0.3	0.1	0.2	0.5
au-lepton	0.2	1.3	0.3	0.1	2.4
Other	2.5	1.2	0.3	1.1	0.8
MC statistical uncertainties	1.6	4.8	8.8	7.9	4.4
Total uncertainties	8.9	19	30	29	21

5×5 Results

5×5 Results

Process	Value		Uno	certainty [f	Ъ]		SM pred.
$(y_H <2.5)$	[fb]	Total	Stat.	Exp.	Sig. th.	Bkg. th.	[fb]
ggF, $H \rightarrow \gamma \gamma$	97	± 14	± 11	± 8	± 2	+ 2 - 1	101.5 ± 5.3
ggF, $H \rightarrow ZZ^*$	1230	+ 190 - 180	± 170	± 60	± 20	± 20	1181 ± 61
ggF, $H \rightarrow WW^*$	10400	± 1800	± 1100	± 1100	± 400	+ 1000 - 900	9600 ± 500
ggF, $H \rightarrow \tau \tau$	2700	+ 1700 - 1500	± 1000	± 900	+ 800 - 300	± 400	2800 ± 140
VBF, $H \rightarrow \gamma \gamma$	11.1	+ 3.2 - 2.8	+ 2.5 - 2.4	+ 1.4 - 1.0	+ 1.5 - 1.1	+ 0.3 - 0.2	7.98 ± 0.21
$VBF, H \to ZZ^*$	249	+ 91 - 77	+ 87 - 75	+ 16 - 11	+ 17 - 12	+ 9 - 7	92.8 ± 2.3
$VBF, H \to WW^*$	450	+ 270 - 260	+ 220 - 200	+ 120 - 130	+ 80 - 70	+ 70 - 80	756 ± 19
VBF, $H \rightarrow \tau \tau$	260	+ 130 - 120	± 90	+ 80 - 70	+ 30 - 10	+ 30 - 20	220 ± 6
VBF, $H \rightarrow b\bar{b}$	6100	+ 3400 - 3300	+ 3300 - 3200	+ 700 - 600	± 300	± 300	2040 ± 50
$VH, H \rightarrow \gamma \gamma$	5.0	+ 2.6 - 2.5	+ 2.4 - 2.2	+ 1.0 - 0.9	± 0.5	± 0.1	$4.54 + 0.13 \\ - 0.12$
$VH, H \to ZZ^*$	36	+ 63 - 41	+ 62 - 41	+ 5 - 4	+ 6 - 4	+ 4 - 2	52.8 ± 1.4
$VH, H \to b\bar{b}$	1380	+ 310 - 290	+ 210 - 200	± 150	+ 120 - 80	± 140	1162 + 31 - 29
$t\bar{t}H+tH, H\rightarrow \gamma\gamma$	1.46	+ 0.55 - 0.47	+ 0.48 - 0.44	+ 0.19 - 0.15	+ 0.17 - 0.11	± 0.03	$1.33 ^{+ 0.08}_{- 0.11}$
$t\bar{t}H+tH, H\to VV^*$	212	+ 84 - 81	+ 61 - 59	+ 47 - 44	+ 17 - 10	+ 31 - 30	142 + 8
$t\bar{t}H+tH,H\to au au$	51	+ 41 - 35	+ 31 - 28	+ 26 - 21	+ 6 - 4	+ 8 - 6	36.7 + 2.2 - 3.1
$t\bar{t}H+tH, H \to b\bar{b}$	270	± 200	± 100	± 80	+ 40 - 10	+ 150 - 160	341 + 20 - 29

Ratio Model results

Quantity		Value	Uncertainty					SM prediction
			Total	Stat.	Exp.	Sig. th.	Bkg. th.	Swi prediction
$\sigma^{ZZ}_{ m ggF}$	[pb]	1.33	± 0.15	+ 0.14 - 0.13	± 0.06	+ 0.02 - 0.01	+ 0.04 - 0.02	1.181 ± 0.061
$\sigma_{ m VBF}/\sigma_{ m ggF}$		0.097	+ 0.025 - 0.021	+ 0.019 - 0.017	+ 0.010 - 0.008	+ 0.011 - 0.008	+ 0.006 - 0.005	0.0786 ± 0.0043
$\sigma_{WH}/\sigma_{ m ggF}$		0.033	+ 0.016 - 0.012	+ 0.012 - 0.009	+ 0.007 - 0.006	+ 0.003 - 0.002	+ 0.007 - 0.005	$0.0269 {}^{+\ 0.0014}_{-\ 0.0015}$
$\sigma_{ZH}/\sigma_{ m ggF}$		0.0180	+ 0.0084 - 0.0061	+ 0.0066 - 0.0052	+ 0.0034 - 0.0021	+ 0.0016 - 0.0009	+ 0.0037 - 0.0025	$0.0178 {}^{+\ 0.0011}_{-\ 0.0010}$
$\sigma_{t\bar{t}H+tH}/\sigma_{ m ggF}$		0.0157	+ 0.0041 - 0.0035	+ 0.0031 - 0.0028	+ 0.0020 - 0.0017	+ 0.0012 - 0.0008	+ 0.0013 - 0.0012	$0.0131 ^{+\ 0.0010}_{-\ 0.0013}$
$B_{\gamma\gamma}/B_{ZZ}$		0.075	+ 0.012 - 0.010	+ 0.010 - 0.009	+ 0.006 - 0.005	± 0.001	± 0.002	0.0860 ± 0.0010
B_{WW}/B_{ZZ}		6.8	+ 1.5 - 1.2	+ 1.1 - 0.9	+ 0.8 - 0.7	± 0.2	+ 0.6 - 0.5	$8.15 \pm < 0.01$
$B_{ au au}/B_{ZZ}$		2.04	+ 0.62 - 0.52	+ 0.45 - 0.40	+ 0.36 - 0.31	+ 0.17 - 0.09	+ 0.12 - 0.09	2.369 ± 0.017
B_{bb}/B_{ZZ}		20.5	+ 8.4 - 5.9	+ 5.9 - 4.6	+ 3.7 - 2.4	+ 1.3 - 0.9	+ 4.2 - 2.9	22.00 ± 0.51

Ratio Model Correlations

STXS Results

Massagement resign ((- x, B) / pSM)	Value	Uno	Uncertainty [pb]		SM prediction
Measurement region $\left((\sigma_i \times B_{ZZ})/B_{ZZ}^{SM} \right)$	[pb]	Total	Stat.	Syst.	[pb]
$gg \to H$, 0-jet	35.5	+ 5.0 - 4.7	+ 4.4 - 4.1	+ 2.5 - 2.2	27.5 ± 1.8
$gg \to H$, 1-jet, $p_{\rm T}^H < 60 \text{ GeV}$	3.7	+ 2.8 - 2.7	+ 2.4 - 2.3	+ 1.5 - 1.4	6.6 ± 0.9
$gg \rightarrow H$, 1-jet, $60 \le p_{\mathrm{T}}^H < 120 \text{ GeV}$	4.0	+ 1.7 - 1.5	+ 1.5 - 1.4	+ 0.8 - 0.7	4.6 ± 0.6
$gg \rightarrow H$, 1-jet, $120 \le p_{\mathrm{T}}^H < 200 \text{ GeV}$	1.0	+ 0.6 - 0.5	± 0.5	+ 0.3 - 0.2	0.75 ± 0.15
$gg \to H, \ge 1$ -jet, $p_{\mathrm{T}}^H \ge 200 \text{ GeV}$	1.2	+ 0.5 - 0.4	± 0.4	+ 0.3 - 0.2	0.59 ± 0.16
$gg \to H, \ge 2$ -jet, $p_{\mathrm{T}}^H < 200 \text{ GeV}$	5.4	+ 2.7 - 2.5	+ 2.2 - 2.1	+ 1.5 - 1.3	4.8 ± 1.0
$qq \rightarrow Hqq$, VBF topo + Rest	6.4	+ 1.8 - 1.5	+ 1.5 - 1.3	+ 1.1 - 0.9	4.07 ± 0.09
$qq \rightarrow Hqq$, VH topo	-0.06	+ 0.70 - 0.58	+ 0.68 - 0.57	+ 0.16 - 0.12	0.515 ± 0.019
$qq \to Hqq, \ p_{\mathrm{T}}^{j} \ge 200 \ \mathrm{GeV}$	-0.21	± 0.33	+ 0.29 - 0.28	+ 0.15 - 0.16	0.220 ± 0.005
$qq \to H\ell\nu, \ p_{\mathrm{T}}^V < 250 \ \mathrm{GeV}$	0.90	+ 0.49 - 0.40	+ 0.40 - 0.33	+ 0.28 - 0.22	0.393 ± 0.009
$qq \to H\ell\nu, \ p_{\rm T}^V \ge 250 \ {\rm GeV}$	0.023	+ 0.028 - 0.015	+ 0.018 - 0.012	+ 0.022 - 0.008	0.0122 ± 0.0006
$gg/qq \rightarrow H\ell\ell, \ p_{\mathrm{T}}^{V} < 150 \ \mathrm{GeV}$	0.17	+ 0.25 - 0.31	± 0.20	+ 0.15 - 0.24	0.200 ± 0.008
$gg/qq \rightarrow H\ell\ell, \ 150 \le p_{\mathrm{T}}^{V} < 250 \ \mathrm{GeV}$	0.028	+ 0.042 - 0.037	+ 0.033 - 0.029	+ 0.026 - 0.023	0.0324 ± 0.0041
$gg/qq \to H\ell\ell, \ p_{\mathrm{T}}^{V} \ge 250 \ \mathrm{GeV}$	0.024	+ 0.025 - 0.013	+ 0.016 - 0.011	+ 0.020 - 0.006	0.0083 ± 0.0009
$t\overline{t}H+tH$	0.84	+ 0.23 - 0.19	+ 0.18 - 0.16	+ 0.14 - 0.11	$0.59 ^{+0.04}_{-0.05}$
Branching fraction ratio	Value	Uncertainty			SM prediction
Branching fraction ratio	varue	Total	Stat.	Syst.	SWI prediction
$B_{\gamma\gamma}/B_{ZZ}$	0.074	+ 0.012 - 0.010	+ 0.010 - 0.009	+ 0.006 - 0.005	0.0860 ± 0.0010
$B_{bar{b}}/B_{ZZ}$	14	+ 8 - 6	+ 5 - 4	+ 6 - 5	22.0 ± 0.5
B_{WW}/B_{ZZ}	7.0	+ 1.5 - 1.3	+ 1.1 - 0.9	+ 1.0 - 0.9	$8.15 \pm < 0.01$
$B_{ au au}/B_{ZZ}$	2.1	+ 0.7 - 0.6	± 0.5	+ 0.5 - 0.3	2.37 ± 0.02

Weakly-Merged STXS results

- Merge VBF-topo bins in gg→H and EW qqH
- Merge qq→ZH and gg→ZH
- Merge VH jet bins and (0,75) GeV and (75,150) GeV bins

STXS Scans

 $\overline{\sigma_{qq \to Hqq, p_{_T}^j \ge 200 \text{ GeV}}^{\text{SM}} \times B_{ZZ^*}^{\text{SM}}}$

2HDM Results

Generic model results

Parameter	(a) $B_{\text{inv}} = B_{\text{undet}} = 0$	(b) B_{inv} free, $B_{\text{undet}} \ge 0$, $\kappa_{W,Z} \le 1$	(c) $B_{\rm BSM} \ge 0$, $\kappa_{\rm off} = \kappa_{\rm on}$
κ_Z	1.11 ± 0.08	> 0.88 at 95% CL	$1.20 ^{+\ 0.18}_{-\ 0.17}$
κ_W	1.05 ± 0.09	> 0.85 at 95% CL	1.15 ± 0.18
κ_b	$1.03 {}^{+}_{-} {}^{0.19}_{0.17}$	$0.85 {}^{+\ 0.15}_{-\ 0.13}$	$1.14 {}^{+}_{-} {}^{0.21}_{0.25}$
κ_t	$1.09 {}^{+}_{-} {}^{0.15}_{0.14}$	$[-1.08, -0.77] \cup [0.96, 1.23]$ at 68% CL	1.18 ± 0.23
$\kappa_{ au}$	$1.05 {}^{+}_{-} {}^{0.16}_{0.15}$	0.99 ± 0.14	$1.16 ^{+\ 0.22}_{-\ 0.24}$
κ_{γ}	1.05 ± 0.09	$0.96^{+0.08}_{-0.06}$	$1.16^{+0.17}_{-0.18}$
κ_g	$0.99 {}^{+}_{-} {}^{0.11}_{0.10}$	$1.05 {}^{+\ 0.12}_{-\ 0.14}$	$1.08 {}^{+\ 0.17}_{-\ 0.18}$
$B_{ m inv}$	-	< 0.30 at 95% CL	-
$B_{ m undet}$	-	< 0.21 at 95% CL	-
$B_{ m BSM}$	=	H.	< 0.49 at 95% CL

к Model Results

Parameter	Definition in terms of κ modifiers	Result
κ_{gZ}	$\kappa_g \kappa_Z / \kappa_H$	1.06 ± 0.07
λ_{tg}	κ_t/κ_g	$1.10^{+0.15}_{-0.14}$
λ_{Zg}	κ_Z/κ_g	$1.12^{+0.15}_{-0.13}$
λ_{WZ}	κ_W/κ_Z	0.95 ± 0.08
$\lambda_{\gamma Z}$	$\kappa_{\gamma}/\kappa_{Z}$	0.94 ± 0.07
$\lambda_{ au Z}$	$\kappa_{ au}/\kappa_{Z}$	0.95 ± 0.13
λ_{bZ}	κ_b/κ_Z	$0.93^{+0.15}_{-0.13}$

VH→bb EFT

EFT Interpretation of the $H \rightarrow \gamma \gamma$ differential XS analysis

Differential fiducial cross-sections measured in H→yy

- \rightarrow Use unfolded distributions in $p_T^{\gamma\gamma}$, N_{jets} , m_{jj} , $\Delta\phi_{jj}$ and p_T^{j1}
- Details in D. Boerner's talk yesterday
- → Correlations between distributions obtained from bootstrap

HEL Operators Considered:

(Results also provided in SMEFT basis)

Consider $\bar{c}_{HW} = \bar{c}_{HB}$ and $\tilde{c}_{HW} = \tilde{c}_{HB}$ only to avoid too-large $H \rightarrow Z\gamma$ rates

AS-CONF-2019-029

H→yy differential XS EFT Results

ATLAS-CONF-2019-029

Coefficient	Observed 95% CL limit	Expected 95% CL limit
$\overline{\overline{c}}_g$	$[-0.26, 0.26] \times 10^{-4}$	$[-0.25, 0.25] \cup [-4.7, -4.3] \times 10^{-4}$
$ ilde{c}_g$	$[-1.3, 1.1] \times 10^{-4}$	$[-1.1, 1.1] \times 10^{-4}$
\overline{c}_{HW}	$[-2.5, 2.2] \times 10^{-2}$	$[-3.0, 3.0] \times 10^{-2}$
$ ilde{c}_{HW}$	$[-6.5, 6.3] \times 10^{-2}$	$[-7.0, 7.0] \times 10^{-2}$
\overline{c}_{γ}	$[-1.1, 1.1] \times 10^{-4}$	$[-1.0, 1.2] \times 10^{-4}$
$ ilde{c}_{\gamma}$	$[-2.8, 4.3] \times 10^{-4}$	$[-2.9, 3.8] \times 10^{-4}$