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“Everything has been said, but not yet by everybody”
[Karl Valentin]
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Existing experimental results in searches of CP violating 
effects in Higgs coupling measurements 

[ATLAS 1602.04516]

In WBF H-> tautau

2 E↵ective Lagrangian framework

The e↵ective Lagrangian considered is the SM Lagrangian augmented by CP-violating operators of mass
dimension six, which can be constructed from the Higgs doublet � and the U(1)Y and SU(2)IW ,L elec-
troweak gauge fields Bµ and Wa,µ (a = 1,2,3), respectively. No CP-conserving dimension-six operators
built from these fields are taken into account. All interactions between the Higgs boson and other SM
particles (fermions and gluons) are assumed to be as predicted in the SM; i.e. the coupling structure in
gluon fusion production and in the decay into a pair of ⌧-leptons is considered to be the same as in the
SM.

The e↵ective U(1)Y - and SU(2)IW ,L-invariant Lagrangian is then given by (following Ref. [21, 22]):

Le↵ = LSM +
fB̃B

⇤2 OB̃B +
fW̃W

⇤2 OW̃W +
fB̃

⇤2OB̃ (1)

with the three dimension-six operators

OB̃B = �
+ ˆ̃Bµ⌫B̂µ⌫� OW̃W = �

+ ˆ̃Wµ⌫Ŵµ⌫� OB̃ = (Dµ�)+ ˆ̃Bµ⌫D⌫� . (2)

and three dimensionless Wilson coe�cients fB̃B, fW̃W and fB̃; ⇤ is the scale of new physics.

Here Dµ denotes the covariant derivative Dµ = @µ + i
2g
0Bµ + ig�a

2 Wa
µ , V̂µ⌫ (V = B,Wa) the field-strength

tensors and Ṽµ⌫ = 1
2✏µ⌫⇢�V⇢� the dual field-strength tensors, with B̂µ⌫ + Ŵµ⌫ = ig

0

2 Bµ⌫ + ig2�
aWa
µ⌫.

The last operator OB̃ contributes to the CP-violating charged triple gauge-boson couplings ̃� and ̃Z via

the relation ̃� = � cot2 ✓W ̃Z =
m2

W
2⇤2 fB̃. These CP-violating charged triple gauge boson couplings are

constrained by the LEP experiments [23–25] and the contribution from OB̃ is neglected in the following;
i.e. only contributions from OB̃B and OW̃W are taken into account.

After electroweak symmetry breaking in the unitary gauge the e↵ective Lagrangian in the mass basis of
Higgs boson H, photon A and weak gauge bosons Z and W± can be written, e.g. as in Ref. [26]:

Le↵ = LSM + g̃HAAHÃµ⌫Aµ⌫ + g̃HAZHÃµ⌫Zµ⌫ + g̃HZZHZ̃µ⌫Zµ⌫ + g̃HWW HW̃+µ⌫W
�µ⌫ . (3)

Only two of the four couplings g̃HVV (V = W±,Z, �) are independent due to constraints imposed by U(1)Y
and SU(2)IW ,L invariance. They can be expressed in terms of two dimensionless couplings d̃ and d̃B as:

g̃HAA =
g

2mW
(d̃ sin2 ✓W + d̃B cos2 ✓W) g̃HAZ =

g

2mW
sin 2✓W(d̃ � d̃B) (4)

g̃HZZ =
g

2mW
(d̃ cos2 ✓W + d̃B sin2 ✓W) g̃HWW =

g

mW
d̃ . (5)

Hence in general WW, ZZ, Z� and �� fusion contribute to VBF production. The relations between d̃ and
fW̃W , and d̃B and fB̃B are given by:

d̃ = �
m2

W

⇤2 fW̃W d̃B = �
m2

W

⇤2 tan2 ✓W fB̃B . (6)

As the di↵erent contributions from the various electroweak gauge-boson fusion processes cannot be dis-
tinguished experimentally with the current available dataset, the arbitrary choice d̃ = d̃B is adopted. This
yields the following relation for the g̃HVV :

g̃HAA = g̃HZZ =
1
2
g̃HWW =

g

2mW
d̃ and g̃HAZ = 0 . (7)
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Only 2 linearly indep. due to 
gauge invariance

relate two parameters -> getThe parameter d̃ is related to the parameter ̂W = ̃W/SM tan↵ used in the investigation of CP properties
in the decay H ! WW [15] via d̃ = �̂W . The choice d̃ = d̃B yields ̂W = ̂Z as assumed in the
combination of the H ! WW and H ! ZZ decay analyses [15].

The e↵ective Lagrangian yields the following Lorentz structure for each vertex in the Higgs bosons coup-
ling to two identical or charge-conjugated electroweak gauge bosons HV(p1)V(p2) (V = W±,Z, �), with
p1,2 denoting the momenta of the gauge bosons:

T µ⌫(p1, p2) =
X

V=W±,Z

2m2
V

v
gµ⌫ +

X

V=W±,Z,�

2g
mW

d̃ "µ⌫⇢�p1⇢p2� . (8)

The first terms (/ gµ⌫) are CP-even and describe the SM coupling structure, while the second terms
(/ "µ⌫⇢�p1⇢p2�) are CP-odd and arise from the CP-odd dimension-six operators. The choice d̃ = d̃B
gives the same coe�cients multiplying the CP-odd structure for HW+W�, HZZ and H�� vertices and a
vanishing coupling for the HZ� vertex.

The matrix elementM for VBF production is the sum of a CP-even contributionMSM from the SM and
a CP-odd contributionMCP-odd from the dimension-six operators considered:

M =MSM + d̃ · MCP-odd. (9)

The di↵erential cross section or squared matrix element has three contributions:

|M|
2 = |MSM|

2 + d̃ · 2 Re(M⇤SMMCP-odd) + d̃2
· |MCP-odd|

2 . (10)

The first term |MSM|
2 and third term d̃2

· |MCP-odd|
2 are both CP-even and hence do not yield a source

of CP violation. The second term d̃ · 2 Re(M⇤SMMCP-odd), stemming from the interference of the two
contributions to the matrix element, is CP-odd and is a possible new source of CP violation in the Higgs
sector. The interference term integrated over a CP-symmetric part of phase space vanishes and therefore
does not contribute to the total cross section and observed event yield after applying CP-symmetric selec-
tion criteria. The third term increases the total cross section by an amount quadratic in d̃, but this is not
exploited in the analysis presented here.

3 Test of CP invariance and Optimal Observable

Tests of CP invariance can be performed in a completely model-independent way by measuring the mean
value of a CP-odd observable hOCPi. If CP invariance holds, the mean value has to vanish hOCPi = 0.
An observation of a non-vanishing mean value would be a clear sign of CP violation. A simple CP-odd
observable for Higgs boson production in VBF, the “signed” di↵erence in the azimuthal angle between
the two tagging jets �� j j, was suggested in Ref. [22] and is formally defined as:

✏µ⌫⇢�bµ+p⌫+b⇢�p�� = 2pT+pT� sin(�+ � ��) = 2pT+pT� sin�� j j . (11)

Here bµ+ and bµ� denote the normalised four-momenta of the two proton beams, circulating clockwise and
anti-clockwise, and pµ+ (�+) and pµ� (��) denote the four-momenta (azimuthal angles) of the two tagging
jets, where p+ (p�) points into the same detector hemisphere as bµ+ (bµ�). This ordering of the tagging jets
by hemispheres removes the sign ambiguity in the standard definition of �� j j.
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8 Results

The mean value of the Optimal Observable for the signal is expected to be zero for a CP-even case, while
there may be deviations in case of CP-violating e↵ects. A mean value of zero is also expected for the
background, as has been demonstrated. Hence, the mean value in data should also be consistent with zero
if there are no CP-violating e↵ects within the precision of this measurement. The observed values for the
mean value in data inside the signal regions are 0.3 ± 0.5 for ⌧lep⌧lep and �0.3 ± 0.4 for ⌧lep⌧had, fully
consistent with zero within statistical uncertainties and thus showing no hint of CP violation.
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Figure 6: Observed and expected �NLL as a function of the d̃ values defining the underlying signal hypothesis, for
⌧lep⌧lep (green), ⌧lep⌧had (red) and their combination (black). The best-fit values of all nuisance parameters from the
combined fit at each d̃ point were used in all cases. An Asimov dataset with SM backgrounds plus pure CP-even
VBF signal (d̃ = 0), scaled to the best-fit signal-strength value, was used to calculate the expected values, shown in
blue. The markers indicate the points where an evaluation was made – the lines are only meant to guide the eye.

As described in the previous section, the observed limit on CP-odd couplings is estimated using a global
maximum-likelihood fit to the Optimal Observable distributions in data. The observed distribution of
�NLL as a function of the CP-mixing parameter d̃ for the individual channels separately, and for their
combination, is shown in Fig. 6. The ⌧lep⌧lep and ⌧lep⌧had curves use the best-fit values of all nuisance
parameters from the combined fit at each d̃ point. The expected curve is calculated assuming no CP-odd
coupling, with the H ! ⌧⌧ signal scaled to the signal-strength value (µ = 1.55+0.87

�0.76) determined from
the fit for d̃ = 0. In the absence of CP violation the curve is expected to have a minimum at d̃ = 0.
Since the first-order Optimal Observable used in the present analysis is only sensitive to small variations
in the considered variable, for large d̃ values there is no further discrimination power and thus the �NLL
curve is expected to flatten out. The observed curve follows this behaviour and is consistent with no CP
violation. The regions d̃ < �0.11 and d̃ > 0.05 are excluded at 68% CL. The expected confidence intervals
are [�0.08, 0.08] ([�0.18, 0.18]) for an assumed signal strength of µ = 1.55 (1.0). The constraints on the
CP-mixing parameter d̃ based on VBF production can be directly compared to those obtained by studying
the Higgs boson decays into vector bosons, as the same relation between the HWW and HZZ couplings
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Excluded at 68% CL

[CMS 1411.3441]

3

in Section 4. The exclusion of exotic spin-one and spin-two scenarios is shown in Section 5.
Finally, for the spin-zero scenario, comprehensive studies of the tensor structure of HVV inter-
actions are presented in Section 6. The results are summarized in Section 7.

2 Phenomenology of spin-parity and anomalous HVV interactions

The production and decay of H is described by its interactions with a pair of vector bosons
VV, such as ZZ, Zg, gg, WW, and gg, or with a fermion-antifermion pair. The relevant phe-
nomenology for the interactions of a spin-zero, -one, and -two boson, as motivated by earlier
studies [28, 29, 31–33, 53], is presented below. In the following, the spin-parity state is gener-
ically denoted as JP, with J = 0, 1, or 2, while the quantum numbers of the SM Higgs boson
are expected to be JPC = 0++. However, the interactions of the observed state do not neces-
sarily conserve C-parity or CP-parity, and the general scattering amplitudes describe the spin-
parity properties of the new boson and its anomalous couplings with a pair of vector bosons or
fermions.

2.1 Decay of a spin-zero resonance

The scattering amplitude describing the interaction between a spin-zero H and two spin-one
gauge bosons VV, such as ZZ, Zg, gg, WW, or gg, includes only three independent invari-
ant tensor structures with the coupling parameters aVV

i that can have both real and imaginary
parts and in general are form factors which can depend on the squared Lorentz invariant four-
momenta of V1 and V2, q2

V1 and q2
V2. In the following, the terms up to q2

V are kept in the expan-
sion under the assumption of small contributions from anomalous couplings

A(HVV) ⇠
"

aVV
1 +

kVV
1 q2

V1 + kVV
2 q2

V2�
LVV

1
�2

#
m2

V1e⇤V1e⇤V2 + aVV
2 f ⇤(1)µn f ⇤(2),µn + aVV

3 f ⇤(1)µn f̃ ⇤(2),µn, (1)

where f (i)µn = e
µ
Viq

n
Vi � en

Viq
µ
Vi is the field strength tensor of a gauge boson with momentum qVi

and polarization vector eVi, f̃ (i)µn = 1
2 eµnrs f (i),rs is the dual field strength tensor, the superscript ⇤

designates a complex conjugate, mV1 is the pole mass of the Z or W vector boson, while the
cases with the massless vector bosons are discussed below, and L1 is the scale of BSM physics
and is a free parameter of the model [31]. A different coupling in the scattering amplitude in
Eq. (1) typically leads to changes of both the observed rate and the kinematic distributions of
the process. However, the analysis presented in this paper does not rely on any prediction of
the overall rate and studies only the relative contributions of different tensor structures.

In Eq. (1), VV stands for ZZ, Zg, gg, WW, and gg. The tree-level SM-like contribution cor-
responds to aZZ

1 6= 0 and aWW
1 6= 0, while there is no tree-level coupling to massless gauge

bosons, that is aVV
1 = 0 for Zg, gg, and gg. Small values of the other couplings can be gener-

ated through loop effects in the SM, but their SM values are not accessible experimentally with
the available data. Therefore, the other terms can be ascribed to anomalous couplings which
are listed for HZZ, HWW, HZg, and Hgg in Table 1 . Among those, considerations of symme-
try and gauge invariance require kZZ

1 = kZZ
2 = � exp(ifZZ

L1), kgg
1 = kgg

2 = 0, k
gg
1 = k

gg
2 = 0,

kZg
1 = 0 and kZg

2 = � exp(ifZg
L1). While not strictly required, the same symmetry is considered

in the WW case kWW
1 = kWW

2 = � exp(ifWW
L1 ). In the above, fVV

L1 is the phase of the anomalous
coupling with LVV

1 , which is either 0 or p for real couplings. In the following, the ZZ labels
for the ZZ interactions will be omitted, and therefore the couplings a1, a2, a3, and L1 are not
labeled explicitly with a ZZ superscript, while the superscript is kept for the other VV states.
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and is a free parameter of the model [31]. A different coupling in the scattering amplitude in
Eq. (1) typically leads to changes of both the observed rate and the kinematic distributions of
the process. However, the analysis presented in this paper does not rely on any prediction of
the overall rate and studies only the relative contributions of different tensor structures.

In Eq. (1), VV stands for ZZ, Zg, gg, WW, and gg. The tree-level SM-like contribution cor-
responds to aZZ

1 6= 0 and aWW
1 6= 0, while there is no tree-level coupling to massless gauge

bosons, that is aVV
1 = 0 for Zg, gg, and gg. Small values of the other couplings can be gener-

ated through loop effects in the SM, but their SM values are not accessible experimentally with
the available data. Therefore, the other terms can be ascribed to anomalous couplings which
are listed for HZZ, HWW, HZg, and Hgg in Table 1 . Among those, considerations of symme-
try and gauge invariance require kZZ

1 = kZZ
2 = � exp(ifZZ

L1), kgg
1 = kgg

2 = 0, k
gg
1 = k

gg
2 = 0,

kZg
1 = 0 and kZg

2 = � exp(ifZg
L1). While not strictly required, the same symmetry is considered

in the WW case kWW
1 = kWW

2 = � exp(ifWW
L1 ). In the above, fVV

L1 is the phase of the anomalous
coupling with LVV

1 , which is either 0 or p for real couplings. In the following, the ZZ labels
for the ZZ interactions will be omitted, and therefore the couplings a1, a2, a3, and L1 are not
labeled explicitly with a ZZ superscript, while the superscript is kept for the other VV states.
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Figure 20: Summary of allowed confidence level intervals on anomalous coupling parameters
in HVV interactions under the assumption that all the coupling ratios are real (fVV

ai = 0 or p).
The expected 68% and 95% CL regions are shown as the green and yellow bands. The observed
constraints at 68% and 95% CL are shown as the points with errors and the excluded hatched
regions. In the case of the f Zg

L1 measurement, there are two minima and two 68% CL intervals,
while only one global minimum is indicated with a point. The combination of the HZZ and
HWW measurements is presented, assuming the symmetry ai = aWW

i , including Rai = 0.5.

results can be interpreted for the coupling parameters used in Eq. (1), as shown in Table 14.
Strong destructive interference of the SM and anomalous contributions at fL1 cos(fL1) ⇠ +0.5
or fa2 cos(fa2) ⇠ �0.5 leads to very different kinematic distributions and exclusions with high
confidence levels. Additional features with multiple likelihood function maxima observed in
the fL1 likelihood scan are due to the superposition of measurements in the 4e/4µ and 2e2µ
channels, which have different maxima due to the interference between the leptons.

Next, two parameters fai and fai are considered at the same time. For example, if the coupling
is known to be either positive or negative, such a scenario is considered in Table 15. In this case,
constraints are set on fai for a given phase value. More generally, one can allow fai to be uncon-
strained, that is, to have any value between �p and +p with a generally complex coupling.
Such a fit is performed for fL1 and fa2 using the same configuration, but with additional fL1
and fa2 parameters in Eq. (21). The results with fai unconstrained (any) are shown in Table 15
as well. The fa3 measurement with fa3 unconstrained is performed with a different technique
and is presented in Ref. [12], where the DCP observable is removed from the fit and the result
becomes insensitive to the phase of the amplitude. This technique is adopted due to its simpler
implementation and equivalent performance.

The next step in generalizing the constraints is to consider two anomalous contributions at
the same time, both with and without the constraints that the couplings are real. Therefore,
up to four parameters are considered at the same time: fai, fai, faj, and faj. Constraints on
one parameter, when other parameters are left unconstrained in the full allowed parameter
space, with 0  fai  1, are presented in Table 15. Even though the expansion with only
three anomalous contributions in Eq. (1) becomes incomplete when large values of fai ⇠ 1 are
considered, this is still a valuable test of the consistency of the data with the SM. All of the above
results, with phases fixed or unconstrained and with other anomalous couplings unconstrained
are shown in Fig. 21 (right). Some observed fai constraints appear to be tighter when compared
to the one-parameter fits shown in Fig. 21 (left). This happens because the values of other
profiled parameters are away from the SM expectation at the minimum of �2 lnL, though
still consistent with the SM. The expected constraints are always weaker with additional free
parameters.

Measurement in H-> 4l
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Electroweak Baryogenesis
12.1 Bounces in a scalar field theory 255

tvφ φ φ
φ

V

topfv

Fig. 12.1. A typical potential with a false vacuum.

To go from the false vacuum through a series of spatially homogeneous configura-
tions would require traversing an infinite potential energy barrier. The tunneling
amplitude for this vanishes. Instead, the false vacuum decays by a tunneling pro-
cess that takes a spatially homogeneous state to one with a region of approximate
true vacuum—a bubble—embedded in a false vacuum background. Because the
bubble can be nucleated anywhere, the decay rate is proportional to the volume
of space, and thus formally infinite. The finite physically measurable quantity
that we need is the bubble nucleation rate per unit volume, Γ/V.

One can envision many paths through the space of field configurations that
connect the pure false vacuum to a configuration with a bubble. Two of these are
illustrated in Fig. 12.2. Each path specifies a series of field configurations that
define a slice through the potential energy barrier. A plot of U [φ(x)] along the
path would be similar to the one-dimensional potential energy barrier shown in
Fig. 9.3. The end point of the path, corresponding to the field configuration at
the time that the bubble nucleates, has the same potential energy as the initial,
pure false vacuum, configuration; quantum tunneling conserves energy.

As described in Chap. 9, the tunneling amplitude is dominated by the path
that minimizes the barrier penetration integral B. This path can be found by
finding the bounce solution to the Euclidean equation of motion [226], which in
the present case is the field equation

0 =
d2φ

dτ2
+ ∇2φ− dV

dφ
(12.3)

that follows from the Euclidean action1

1 Because almost all actions in this chapter will be Euclidean, I will generally omit an explicit
subscript E on the action.

false
true
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• Spontaneous symmetry breaking after 
temperature cooled down during expansion 
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CP violation during Electroweak BaryogenesisThe SM sphalerons convert this into a net baryon number. Integrating over the asymmetric
phase z < 0, where the sphalerons act, the baryon asymmetry becomes

YB =
nb

s
= �

3�ws

2vws

Z
0

�1
nL(z) e

zR�ws/vw dz . (49)

which is to be compared with the data in Eq. (1). Here s = 2⇡2/(45)g⇤ST 3 is the entropy density,
and g⇤S = 106.75 the entropy degrees of freedom at the electroweak scale. The relaxation
term R = 15/4 in the SM, and the weak sphaleron rate is �ws = 6↵5

wT with  ⇠ 20 and
↵w = g2/(4⇡).

5 The baryon asymmetry and investigation of the SM-EFT ex-

pansion

In this section we compare the baryon asymmetry computed in scenario A and B, and use this
as guidance to investigate the validity of the SM-EFT expansion. We numerically compute the
baryon asymmetry, using the methods described in Sect. 4. We use the benchmark Higgs profile
described by Eq. (36).

5.1 Interaction strength and source term

An important ingredient in the calculation of the asymmetry is the interaction strength between
left- and right-handed top quarks f(T,�b) defined in Eq. (40), which depends on the tempera-
ture, the bubble profile, and on the source of CP violation. The various interaction strengths
fi(T,�b), where i = {A,B,EOM} corresponding to the CPV operators in scenarios A (Eq. (7)),
B (Eq. (8)), and B after applying the EOM (Eq. (10)), have been calculated in Appendix A.2
in the high-temperature limit and are given explicitly in Eq. (A.20). The baryon asymmetry in

particular depends on the combination SCP�
/ �i ⌘ Im(f 0

i
f⇤
i
) which enters the source term, and

varies between the scenarios.
In order for �i to be nonzero, we require that fi has both real and imaginary parts, and fi

must have at least one term that depends non-linearly on the background field. For instance, for
a linear dependence, f = c�b with c any complex number, it is clear that �i = Im(|c|)�b�0

b
= 0.

The requirement of a non-linear dependence reflects that a CP-phase in the SM dimension-
four Yukawa term can be rotated away and is not physical, see also the discussion surrounding
Eq. (12). With these considerations we obtain in the di↵erent scenarios
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The results for fEOM were obtained by first applying the EOM to the tree-level Lagrangian of
scenario B, and then calculating the one-loop thermal corrections to fEOM. We have checked
in Appendix A that the same result is obtained if we first calculate the thermal corrections in
scenario B to determine fB, and then apply the one-loop equations of motion to obtain fEOM.
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2

two hadronic taus, ⇥, which we will define precisely in
section III C, contains information about the CP proper-
ties of the Higgs coupling to taus. In particular, the CP

phase � in the Higgs couplings may be read o↵ directly
from the ⇥ distribution. The di↵erential cross section is
shown analytically in sections III B and C to have the
form c�A cos(⇥�2�), and � may be measured by find-
ing the minimum of the distribution (as exemplified in
figure 2). The dominant background for h ! ⌧⌧ events
at the LHC is Z ! ⌧⌧ , which produces a flat ⇥ distribu-
tion.

The ability to distinguish scalar versus pseudoscalar
Higgs couplings in the tau channel has been discussed
in [12–22]. Our work quantitatively improves on these
results: our ⇥ variable is demonstrably more sensitive to
the CP phase of the Higgs coupling to taus compared to
earlier proposed observables, and our simulation results
for the ILC indicate a corresponding increase in sensi-
tivity compared to earlier results. This work is also a
qualitative step forward in that we propose a strategy to
do this measurement at the LHC. Previous studies relied
on resolving a displaced vertex in ⌧ decays which is chal-
lenging. We show that our observable retains sensitivity
without this.

It should be stressed that in order to reconstruct the
angle ⇥, full knowledge of all four-momenta components
in the event is needed, including those of the two neu-
trinos. We will discuss the challenges that this presents
and how they may be addressed. In the context of a
Higgs factory (ILC), h ! ⌧

+
⌧
�

! ⇢
+
⇢
�
⌫⌫̄ events may

be fully reconstructed up to a two-fold ambiguity. Fur-
thermore, a favorable signal to background ratio makes
our measurement straightforward. At a hadron collider,
however, some approximations are needed for the neu-
trino four-momenta. Employing the collinear approxi-
mation [23], we show that the amplitude of the angular
structure in ⇥ is only reduced by an order one factor for
h ! ⌧⌧ signal events. The challenge for the LHC is thus
to increase the signal to background ratio as much as pos-
sible in order to produce a statistically significant result.
In addition, an improvement over the collinear approx-
imation would make a positive impact on the resulting
sensitivity to �.

Our net result is that, using the ⇥ variable, a mea-
surement of � with an accuracy of 4.4� is possible for a
p
s = 250 GeV e

+
e
� collider, assuming 1 ab�1 of lumi-

nosity (without incorporating detector e↵ects, which are
expected to be negligibly small). This number should be
compared with the result of Ref. [18], which quotes an
accuracy of measuring � to 6� using the same amount of
luminosity but for

p
s = 350 GeV and mh = 120 GeV.

We also provide the first estimates for sensitivity to �
at the LHC. Without incorporating detector e↵ects or
pileup, we find an ideal measurement of � to an accu-
racy of 11.5� is possible with 3 ab�1 of

p
s = 14 TeV

LHC data for a ⌧ -tagging e�ciency of 50%. Improving
the e�ciency from 50% to 70% could lead to an accuracy
of 8.0� using the same LHC luminosity.

This paper is organized as follows. In section II we add
CP violation to the Higgs coupling to tau leptons. In sec-
tion III we introduce our observable, first in a heuristic
analysis that follows every step of the decay, and then
rigorously, using the analytic form of the full 1 ! 6
di↵erential cross section. We present the results of our
collider analyses in section IV. We first present the rele-
vant distributions using Monte Carlo truth information,
then reevaluate in a Higgs factory setup, where a twofold
ambiguity needs to be considered, and finally consider
an LHC setting using the collinear approximation. We
conclude in section V. A weakly-coupled renormalizable
model giving rise to CP violation in the Higgs coupling
to taus is presented in appendix A.

II. A CP -VIOLATING h⌧ ⌧̄ COUPLING

In our study of the CP nature of h ! ⌧
+
⌧
�, we use

the following phenomenological Lagrangian:

Lpheno � �m⌧ ⌧̄ ⌧ �
y⌧
p
2
h⌧̄(cos�+ i�5 sin�)⌧

= �m⌧ ⌧̄ ⌧ �
y⌧
p
2
h
�
⌧
†
L(cos�+ i sin�)⌧R

+ c.c.
�
, (2)

where ⌧ and h are the physical tau lepton and Higgs
boson in the mass basis, respectively, y⌧ is a real pa-
rameter parametrizing the magnitude of the h⌧ ⌧̄ cou-
pling, and, most importantly, � 2 (�⇡/2,⇡/2] is an an-
gle describing the CP nature of the h⌧ ⌧̄ coupling.2 The
CP -even and CP -odd cases correspond to � = 0 and
� = ⇡/2, respectively, while � = ±⇡/4 describe maxi-
mally CP -violating cases. The SM corresponds to a spe-
cial case, y⌧ = y

SM
⌧ ⌘ m⌧/v with � = 0. We will refer to

“cos�+ i sin�” as a “CP -violating h⌧ ⌧̄ coupling”, even
though it includes the CP -conserving limits of� = 0 and
⇡/2. In this work, we focus on the e↵ects of �, so we will
take y⌧ = y

SM
⌧ while treating � as a free parameter.

The simplest fully gauge-invariant operator that re-
sults in the CP -violating h⌧ ⌧̄ coupling (2) upon elec-
troweak symmetry breaking is given by

Le↵ � �

⇣
↵+ �

H
†
H

⇤2

⌘
H`

†
3L⌧R + c.c. , (3)

where ↵ and � are complex dimensionless parameters,
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two hadronic taus, ⇥, which we will define precisely in
section III C, contains information about the CP proper-
ties of the Higgs coupling to taus. In particular, the CP

phase � in the Higgs couplings may be read o↵ directly
from the ⇥ distribution. The di↵erential cross section is
shown analytically in sections III B and C to have the
form c�A cos(⇥�2�), and � may be measured by find-
ing the minimum of the distribution (as exemplified in
figure 2). The dominant background for h ! ⌧⌧ events
at the LHC is Z ! ⌧⌧ , which produces a flat ⇥ distribu-
tion.

The ability to distinguish scalar versus pseudoscalar
Higgs couplings in the tau channel has been discussed
in [12–22]. Our work quantitatively improves on these
results: our ⇥ variable is demonstrably more sensitive to
the CP phase of the Higgs coupling to taus compared to
earlier proposed observables, and our simulation results
for the ILC indicate a corresponding increase in sensi-
tivity compared to earlier results. This work is also a
qualitative step forward in that we propose a strategy to
do this measurement at the LHC. Previous studies relied
on resolving a displaced vertex in ⌧ decays which is chal-
lenging. We show that our observable retains sensitivity
without this.

It should be stressed that in order to reconstruct the
angle ⇥, full knowledge of all four-momenta components
in the event is needed, including those of the two neu-
trinos. We will discuss the challenges that this presents
and how they may be addressed. In the context of a
Higgs factory (ILC), h ! ⌧

+
⌧
�

! ⇢
+
⇢
�
⌫⌫̄ events may

be fully reconstructed up to a two-fold ambiguity. Fur-
thermore, a favorable signal to background ratio makes
our measurement straightforward. At a hadron collider,
however, some approximations are needed for the neu-
trino four-momenta. Employing the collinear approxi-
mation [23], we show that the amplitude of the angular
structure in ⇥ is only reduced by an order one factor for
h ! ⌧⌧ signal events. The challenge for the LHC is thus
to increase the signal to background ratio as much as pos-
sible in order to produce a statistically significant result.
In addition, an improvement over the collinear approx-
imation would make a positive impact on the resulting
sensitivity to �.

Our net result is that, using the ⇥ variable, a mea-
surement of � with an accuracy of 4.4� is possible for a
p
s = 250 GeV e

+
e
� collider, assuming 1 ab�1 of lumi-

nosity (without incorporating detector e↵ects, which are
expected to be negligibly small). This number should be
compared with the result of Ref. [18], which quotes an
accuracy of measuring � to 6� using the same amount of
luminosity but for

p
s = 350 GeV and mh = 120 GeV.

We also provide the first estimates for sensitivity to �
at the LHC. Without incorporating detector e↵ects or
pileup, we find an ideal measurement of � to an accu-
racy of 11.5� is possible with 3 ab�1 of

p
s = 14 TeV

LHC data for a ⌧ -tagging e�ciency of 50%. Improving
the e�ciency from 50% to 70% could lead to an accuracy
of 8.0� using the same LHC luminosity.

This paper is organized as follows. In section II we add
CP violation to the Higgs coupling to tau leptons. In sec-
tion III we introduce our observable, first in a heuristic
analysis that follows every step of the decay, and then
rigorously, using the analytic form of the full 1 ! 6
di↵erential cross section. We present the results of our
collider analyses in section IV. We first present the rele-
vant distributions using Monte Carlo truth information,
then reevaluate in a Higgs factory setup, where a twofold
ambiguity needs to be considered, and finally consider
an LHC setting using the collinear approximation. We
conclude in section V. A weakly-coupled renormalizable
model giving rise to CP violation in the Higgs coupling
to taus is presented in appendix A.
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from which we identify
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SM
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and we have taken y
SM
⌧ to be real and positive (hence

m⌧ ⌘ y
SM
⌧ v is real and positive) without loss of generality

after suitable redefinition of the phase of ⌧R. With this
phase convention, the h⌧ ⌧̄ coupling in (2) is generally
complex:

y⌧ (cos�+ i sin�) = ↵+ 3�
v
2
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= y
SM
⌧ + 2�

v
2

⇤2
. (6)

Since y
SM
⌧ ⇠ 10�2, new physics at the TeV scale (⇤ ⇠

10v) with O(1) couplings (|�| ⇠ 1) can give rise to �
anywhere in the full range (�⇡/2,⇡/2].3 This is in stark
contrast to the case of a CP -odd/violating Higgs cou-
pling to Z bosons, where TeV-scale new physics is ex-
pected to give only small corrections to the SM CP -even
coupling.

III. THE OBSERVABLE

To probe the CP -violating h⌧ ⌧̄ coupling in (2), we will
study the following decay process:

h �! ⌧
�
⌧
+

�! ⇢
�
⌫⌧ ⇢

+
⌫̄⌧

�! ⇡
�
⇡
0
⌫⌧ ⇡

+
⇡
0
⌫̄⌧ . (7)

There are several good reasons to choose this decay chain.
First, to minimize the loss of kinematic information due
to neutrinos, we want both ⌧

� and ⌧
+ to decay hadron-

ically. Second, of the hadronic decay modes, we choose
⌧ ! ⇢⌫, since the subsequent decay, ⇢± ! ⇡

±
⇡
0, can

be reconstructed at a collider. Third, ⌧ ! ⇢⌫ has the
largest branching fraction of any individual tau decay
mode, ⇠ 25%, and the following step, ⇢ ! ⇡⇡, occurs
with a nearly 100% probability. Finally, the ⇢ width is
su�ciently narrow that it is well justified to consider it
on-shell, which makes the process in (7) an analytically
tractable sequence of 2-body decays.

3 An “existence proof” of such new physics in terms of a weakly-
coupled renormalizable theory is given in appendix A.

We begin with a heuristic look at the process in (7)
to develop a rough idea of how it can probe the CP -
violating h⌧⌧ coupling (2). In particular, the highlights
of qualitative points to be made in sections IIIA 1, A 2
and A3 are:

1: Measuring ⌧ helicities cannot determine the CP

phase, but the ⌧ polarizations in directions perpen-
dicular to the ⌧ momenta can.

2: In the tau rest frame the ⇢ is predominantly longi-
tudinal and is polarized roughly in the direction of
the ⌧ polarization.

3: The di↵erence between the charged and neutral
pion 3-momenta, ~p⇡± � ~p⇡0 , is roughly parallel to
the respective ⇢

± polarization.

Therefore, the CP nature of h ! ⌧⌧ must be encoded in
the orientation of “~p⇡±� ~p⇡0” in the plane perpendicular
to the ⌧

± momenta in the Higgs rest frame. A precise
form of “~p⇡±�~p⇡0” as well as the best observable to mea-
sure the CP phase � will be identified in sections III B
and C by analytically computing the full matrix element
for the sequence of two-body decays in process (7).

A. A heuristic analysis

1. h ! ⌧� ⌧+

The most general form of the amplitude for the decay
h ! ⌧

�
⌧
+ is given by

Mh!⌧⌧ /

X

s,s0

�s,s0 ū
s
⌧� (cos�+ i�5 sin�) vs

0

⌧+ , (8)

where �s,s0 is the probability amplitude of ⌧
� and ⌧

+

having helicities s/2 and s
0
/2, respectively. Lorentz in-

variance dictates that the proportionality factor omitted
in (8) has no momentum dependence.
In the Higgs rest frame, the amplitude (8) takes the

form

Mh!⌧⌧ / |~p⌧�|�
1
0 cos�� iE⌧��

0
0 sin� , (9)

where ~p⌧� and E⌧� are the ⌧
� momentum and energy

in this frame, while �
j
m is the linear combination of �s,s0

with angular momentum (j,m). In particular,

�
1
0 =

�1,1 + ��1,�1
p
2

, �
0
0 =

�1,1 � ��1,�1
p
2

. (10)

The amplitude in (9) shows that the CP -even contribu-
tion (/ cos�) is a spin triplet in a p-wave, while the
CP -odd contribution (/ sin�) is a spin singlet in an
s-wave. This can be understood as a consequence of an-
gular momentum conservation and Fermi statistics, with
the additional fact that a fermion–anti-fermion pair has
an odd intrinsic parity.
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Therefore, the CP nature of h ! ⌧⌧ must be encoded in
the orientation of “~p⇡±� ~p⇡0” in the plane perpendicular
to the ⌧

± momenta in the Higgs rest frame. A precise
form of “~p⇡±�~p⇡0” as well as the best observable to mea-
sure the CP phase � will be identified in sections III B
and C by analytically computing the full matrix element
for the sequence of two-body decays in process (7).

A. A heuristic analysis

1. h ! ⌧� ⌧+

The most general form of the amplitude for the decay
h ! ⌧

�
⌧
+ is given by

Mh!⌧⌧ /

X

s,s0

�s,s0 ū
s
⌧� (cos�+ i�5 sin�) vs

0

⌧+ , (8)

where �s,s0 is the probability amplitude of ⌧
� and ⌧

+

having helicities s/2 and s
0
/2, respectively. Lorentz in-

variance dictates that the proportionality factor omitted
in (8) has no momentum dependence.
In the Higgs rest frame, the amplitude (8) takes the

form

Mh!⌧⌧ / |~p⌧�|�
1
0 cos�� iE⌧��

0
0 sin� , (9)

where ~p⌧� and E⌧� are the ⌧
� momentum and energy

in this frame, while �
j
m is the linear combination of �s,s0

with angular momentum (j,m). In particular,

�
1
0 =

�1,1 + ��1,�1
p
2

, �
0
0 =

�1,1 � ��1,�1
p
2

. (10)

The amplitude in (9) shows that the CP -even contribu-
tion (/ cos�) is a spin triplet in a p-wave, while the
CP -odd contribution (/ sin�) is a spin singlet in an
s-wave. This can be understood as a consequence of an-
gular momentum conservation and Fermi statistics, with
the additional fact that a fermion–anti-fermion pair has
an odd intrinsic parity.



New sources of CP-violation can be accommodated in several ways

•  Yukawa-Higgs coupling

•  Scalar-Higgs coupling

•  gauge-Higgs coupling

CP-violating terms in the scalar potential

CP-violating Yukawa-type interactions

(not exhaustive)
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5.1 The scalar potential, notation 1

The most general renormalizable, i.e. quartic, scalar potential may be written [369]

VH = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −

(
m2

12Φ
†
1Φ2 +H.c.

)

+1
2λ1

(
Φ†

1Φ1

)2
+ 1

2λ2
(
Φ†
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+ λ3
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)(
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1
2λ5

(
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+ λ6
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Φ†

1Φ1

)(
Φ†

1Φ2

)
+ λ7

(
Φ†

2Φ2

)(
Φ†

1Φ2

)
+H.c.

]
, (98)

where “H.c.” stands for the Hermitian conjugate. The parameters m2
11, m

2
22, and λ1,2,3,4

are real. In general, m2
12 and λ5,6,7 are complex. Thus, the Higgs potential in eq. (98)

depends on six real and four complex parameters, i.e. a total of fourteen degrees of
freedom. However, as we shall see below, the freedom to redefine the basis means that in
reality only eleven degrees of freedom are physical.

In eq. (98) we are following the definitions of Davidson and Haber [359]; often other
definitions are used, in which the same symbol may be employed for quantities which
differ from ours in sign, a factor of two, or complex conjugation.

5.2 The scalar potential, notation 2

An alternative notation for the scalar potential, which has been championed by Botella
and Silva [370], is

VH =
2∑

a,b=1

µab Φ
†
aΦb +

1
2

2∑

a,b,c,d=1

λab,cd
(
Φ†

aΦb

) (
Φ†

cΦd

)
, (99)

where, by definition,
λab,cd = λcd,ab. (100)

In eq. (99) hermiticity implies

µab = µ∗
ba and λab,cd = λ∗ba,dc. (101)

The notation of eq. (99) is useful for the study of invariants, basis transformations, and
symmetries. The correspondence between notations 1 and 2 is given by

µ11 = m2
11, µ22 = m2

22,

µ12 = −m2
12, µ21 = −m2

12
∗

λ11,11 = λ1, λ22,22 = λ2,

λ11,22 = λ22,11 = λ3, λ12,21 = λ21,12 = λ4, (102)

λ12,12 = λ5, λ21,21 = λ∗5,

λ11,12 = λ12,11 = λ6, λ11,21 = λ21,11 = λ∗6,

λ22,12 = λ12,22 = λ7, λ22,21 = λ21,22 = λ∗7.

Once again, one must be careful when confronting eq. (99) to similar equations written
in other papers, since the same symbol may be used in different papers for quantities which
differ in sign, a factor of two, or complex conjugation.
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We observe a generic connection between LHC Higgs data and electroweak baryogenesis: the particle that
contributes to the CP odd hgg or h�� vertex would provide the CP violating source during a first order phase
transition. It is illustrated in the 2HDM that a common complex phase controls the lightest Higgs properties
at the LHC, electric dipole moments and the CP violating source for electroweak baryogenesis. We perform
a general parametrization of Higgs effective couplings and a global fit to the LHC Higgs data. Current LHC
measurements prefer a nonzero phase for tan� . 1 and EDM constraints still allow an order one phase for
tan� ⇠ 1, which gives sufficient room to generate the correct cosmic baryon asymmetry. We also give some
prospects in the direct measurements of CP violation in the Higgs sector at the LHC.

Introduction. The presence of CP violation (CPV) is always
an important aspect in particle physics, which unambiguously
leads to discoveries and open questions. In the Standard
Model (SM), the CPVs in the K and B-meson systems have
established the Cabbibo-Kobayashi-Maskawa (CKM) matrix.
Sakharov [1] has observed that CPV is essential for creating
the apparent asymmetry between matter and anti-matter in our
universe. Unfortunately, the CP phase in the CKM matrix
is always accompanied with huge suppression from the large
quark mass hierarchy when used to generate baryons. There-
fore, the search for other sources of CPV would be indispens-
able for beyond SM physics.

The observation of a SM Higgs-like boson at the Large
Hadron Collider (LHC) with a mass at around 125 GeV was
announced last summer [2]. Since then, more data has been
accumulated [3, 4] and more sophisticated analysis has been
carried out based on various Higgs production and decay
channels mostly assuming CP conservation [5], with only few
exceptions [6–8]. If CP is violated, both higher dimensional
CP even and odd operators would contribute to gg ! h and
h ! �� processes without interference. One would expect the
results of the Higgs global fits to be different in structure from
previous studies. Interestingly, the same source of CPV would
contribute to fermion electric dipole moment (EDM) [9, 10],
and the interplay between the Higgs properties and low energy
constrains would be highly non-trivial.

The CPV source manifests in the higher dimensional Higgs
and EDM operators can be mediated by a weak-scale parti-
cle (fermion) X with sizable Higgs couplings. We point out
this has an intrinsic connection to electroweak baryogenesis
(EWBG) in the early universe. To see this more clearly, con-
sider the renormalizable couplings of X to the Higgs boson,
which can be generically parametrized as mX̄[1 + cXh/v +
(⇠ + c̃Xh/v)i�5]X , where ⇠ is a phase from spontaneous CP
violation. Up to linear terms in h and ⇠, one can remove the
i�5 term by a field redefinition at the expense of generating
✓̄-like terms which linearly depend on h and ⇠,

⇠ (⇠ + c̃Xh/v)FF̃ , (1)

where F is the field strength of the gauge symmetry under
which X has a charge. In the early universe, during a strongly

first order electroweak phase transition (SFO EWPT), ⇠ can be
space-time dependent through the bubble wall. For SU(2)L,
the first term in Eq. (1) creates a chemical potential and gen-
erates a net charge asymmetry QX : ⇠(x)FF̃ ⇠ @t⇠(x) · QX,
which is nothing but the CPV source for EWBG and QX will
be furthered reprocessed into baryon asymmetry (B) through
weak sphaleron transitions. At zero temperature, the second
term in Eq. (1) contributes to the CPV h ! �� decay, or
gg ! h production if X is colored. The most familiar exam-
ples of X include the top and gaugino-Higgsinos. It is def-
initely appealing if baryogenesis can be explained with the
knowledge of electroweak scale physics. After the Higgs dis-
covery, we enter a territory to measure or constrain the possi-
ble CPV sources responsible for B in our universe.

In this letter, we perform a first study on the direct connec-
tion between the latest LHC results on Higgs properties and
the baryon number generation from a common CPV phase.
We work in a Two-Higgs-Doublet Model (2HDM) and the
CPV mediator X is identified as the top quark. We study the
case when the lightest Higgs boson, with a mass 125 GeV, is
a mixture of CP even and odd states. We derive the modified
Higgs coupling to other SM particles, and perform a global
fit to the current data and extract the constraints on such a
phase, which is still allowed to be nonzero, and even favored
to be large with tan� . 1. We study the electron and neutron
EDMs and find the constraints on the same CP phase can be
alleviated due to a cancellation with tan� ⇠ 1. We show such
a CP phase is capable of providing all the essential ingredients
for EWBG. The future advances in precise measurements of
Higgs properties, EDMs and refinements in EWBG calcula-
tions are anticipated to offer further interplays and pave the
way for the genuine origin of CPV for baryon asymmetry.

2HDM and Sources of CP Violation. To be specific, we
consider the type-II 2HDM, with the Higgs potential
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4

tt̄+ jets Z+2 jets H+2 jets A+2 jets
σ [fb] σ [fb] σ [fb] σ [fb]

pT,j ≥ 40 GeV, |yj | ≤ 4.5, nj ≥ 2
2132.46 8.52 6.21 4.12

pT,τ ≥ 20 GeV, |ητ | ≤ 2.5 nτ = 2

mjj ≥ 600 GeV 145.68 3.98 4.12 1.87

|mττ −mH | < 20 GeV, |yH | ≤ 2.5 99.86 2.29 3.99 1.82

∃ ja, jb : yja < yh < yjb 88.33 1.65 3.81 1.59

b-veto 5.10 1.65 3.81 1.59

TABLE I: Cut flow of the analysis as described in Sec. III B. For Z+2 jets, H+2 jets and A+2 jets we normalize to their NLO
QCD cross section. The tt̄ production cross section we normalize to the NNLO QCD cross section given in [33]. We neglect
tau reconstruction efficiencies throughout. For the b-veto we assume a flat efficiency analogous to [29].
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FIG. 1: Normalized distributions of ∆Φjj

and of the event shape observables of Sec. II.
The cuts of Sec. III B have been applied.
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2

servables, whereas kinematic information such as trans-
verse momentum distributions are instead used to con-
strain CP-even operators.

We find that there is a small asymmetry in two CP-
sensitive measurements of the signed azimuthal angle be-
tween the hadronic jets in h + 2 jet events, with a com-
bined value of 0.3 ± 0.2. However, we also find that the
current data cannot distinguish between di↵erent sources
of CP violation, with three blind directions when one
considers the four CP-odd operators that cause anoma-
lous Higgs boson interactions with weak bosons or glu-
ons. We then demonstrate how the blind directions in
the CP-odd coupling space can be removed using ob-
servables that can already be measured with the existing
LHC datasets. Building on these insights, we provide
projections for the upcoming LHC Run-3 and HL-LHC,
where the available dataset will increase by factors of 10
and 100, respectively.

The paper is organised as follows. We motivate the lin-
earised dimension-6 e↵ective field theory in Sec. II. Sec-
tion III provides an overview of technical aspects of our
analysis. The constraints on EFT operators obtained by
fits to published model-independent data are presented
in Sec. IV. We propose new measurements to be made in
Sec. V and show their expected impact on constraining
the di↵erent sources of CP violation in the Higgs sector.
Finally, we conclude in Sec. VI.

II. THEORETICAL FRAMEWORK

New CP-violating e↵ects in the Higgs boson’s inter-
actions with gluons or weak bosons can be introduced
through a minimal set of CP-odd dimension-6 opera-
tors [24]:

O
HG̃

= H†HGaµ⌫G̃a

µ⌫
, (1a)

O
HW̃

= H†HW aµ⌫W̃ a

µ⌫
, (1b)

O
HB̃

= H†HBµ⌫B̃µ⌫ , (1c)

O
HW̃B

= H†⌧aHBµ⌫W̃
aµ⌫ , (1d)

where H is the Higgs doublet and G,W,B are the
SU(3) ⇥ SU(2) ⇥ U(1) field strength tensors. The ⌧a

are the SU(2) generators. Fields with a tilde are the
dual tensors, e.g. G̃a

µ⌫
= "abcGbc

µ⌫
/2.

These operators could originate from complex phases
in the interactions between the Higgs boson and heavy
fermions, whose masses are far above the electroweak
scale. Additional complex phases in the SM Yukawa sec-
tor would be another source of CP-violation, e.g. in the
tt̄h interaction [25–28]. Any kinematic e↵ect from this in-
teraction would be degenerate with O

HG̃
in gluon-fusion

production as long as the mt threshold is not resolved
kinematically, which does not happen for our choice of
measurements. An associated blind direction is therefore
implied in our constraints.

The operators of Eq. (1) are well-motivated candidate
interactions for our analysis. They are closed under RGE
flow [29–33], allowing well-defined constraints. Further,
the small number of operators can be probed with a few
di↵erential distributions.
For completeness, analogous CP-even deformations to

the SM are also introduced (OHG, OHW , OHB , OHWB).
The e↵ective Lagrangian is then defined as

L = LSM +
X

i

ci
⇤2

Oi (2)

where the sum runs over the CP-even and CP-odd op-
erators. This allows us to split the amplitude into an
SM part, MSM, and a genuine dimension-6 part, Md6.
Including all dimension-6 e↵ects yields

|M|
2 = |MSM|

2 + 2Re (M?

SMMd6) +O(⇤�4). (3)

The integration over interference terms (proportional to
1/⇤2) vanishes when only CP-odd EFT operators con-
tribute [34] at dimension-6 because the SM amplitude is
CP-even and the integrated e↵ect of interfering the SM
amplitude with a CP-odd amplitude is zero. This means
that there is no contribution from the interference term
to the inclusive rate, or to CP-even observables such as
transverse momenta and invariant masses, and the only
contribution is to appropriately constructed CP-odd ob-
servables. This is not the case for terms proportional to
1/⇤4, which contain the squared dimension-6 amplitude
and produce a CP-even e↵ect regardless of the nature
of the operator. This has historically served as a moti-
vation to constrain CP-odd operators with momentum-
dependent observables in a range of production modes
[26, 28, 35–43]. However, such an approach is model-
dependent since it neglects dimension-8 operators that
interfere with the SM and in general produce similar
O(1/⇤4) e↵ects.
In this paper we limit ourselves to interference-only

e↵ects so the constraints on CP-odd operators will be
entirely derived from CP-odd observables, which are dis-
cussed in the next section. This approach is naturally
less sensitive compared to including |Md6|

2 terms so it
provides a conservative outlook into the future: if pertur-
batively meaningful constraints can be obtained in the
linearised approach, these will only be strengthened if
|Md6|

2 terms are included.
The interference-only contribution from each operator

to each observable is constructed using Madgraph5 [44]
and the SMEFT implementation of Ref. [45]. Event sam-
ples are produced separately for gluon-fusion and weak-
boson-fusion production at fixed values of ci = 1 and
⇤ = 1 TeV. These parton-level events are passed to
Pythia8 [46] to model the Higgs-boson decay, parton
showering, hadronisation and multiple parton interac-
tions. Rivet [47] is then used to select events in each
decay channel and to construct each observable accord-
ing to the selection criteria published in the experimen-
tal papers. The cross-section contribution in each bin

[Bernlochner et al ’18]

CP violating interactions of the Higgs boson

Use recent ATLAS measurements in             and      

3

is multiplied by �H!XX(ci)/�H(ci), to account for the
Higgs-boson branching fraction at the given point in EFT
coupling space. Interference-only predictions for each ob-
servable at other values of the Wilson coe�cients are ob-
tained by linear scaling.

The Standard Model prediction for the gluon fusion
process is determined using Powheg NNLOPS [48] and
scaled to the N3LO inclusive cross section calculation
with NLO electroweak corrections [49–52]). For vec-
tor boson fusion and Higgs boson production in asso-
ciation with a weak boson, the SM predictions are de-
termined using Powheg [53–56] and each is scaled to
the NNLO calculation with NLO electroweak corrections
applied [57–62]. These predictions are taken from the
experimental publications.

III. FRAMEWORK AND FITTING

We implement our statistical tests by constructing a
likelihood function L(c/⇤2) for all observables

L(c/⇤2) =
observablesY
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Li(c/⇤
2) , (4)

with Li(c/⇤2) denoting the likelihood of an individual
observable �i for a given vector of EFT coe�cients c/⇤2.
We assume Gaussian uncertainties on the h ! �� and
h ! 4` di↵erential cross-section measurements and con-
struct a covariance ⌃i of the total experimental uncer-
tainty such that
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with ⌧i = ⌧i(c/⇤2) denoting the expected cross-
section vector, which is constructed from the SM and
interference-only cross-section contributions discussed in
the previous section. Estimators (ĉ/⇤2) for the Wilson
coe�cients are obtained by numerically maximising L
to obtain Lmax, and confidence intervals (CI) are con-
structed using the asymptotic behaviour of the likeli-
hood. The CI are defined by finding value(s) of c/⇤2

such that for a fixed CI
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with f�2(x;m dof) denoting the �2-distribution withm =
dim(c) degrees of freedom. Statistical correlations be-
tween observables in the h ! �� di↵erential cross sec-
tion measurements are taken into account in the fits by
constructing an appropriate version of Eq. (5).

The likelihood function is implemented in theGamma-
Combo package [63], which uses Minuit to carry out the
numerical maximisation and relevant profiling. The two-
dimensional coverage of the shown results correspond to
68.3% and 95.5% CI. The level of bias in the estimators

c/⇤2 and the accuracy of the coverage have been tested
using ensembles of pseudo-experiments generated around
the SM and benchmark points.

IV. RESULTS WITH EXISTING
MEASUREMENTS

The most constraining model-independent Higgs bo-
son measurements are the di↵erential cross sections in
the h ! �� and h ! ZZ⇤

! 4` decay channels. In
this analysis we use recent ATLAS measurements made
at

p
s = 13 TeV [42, 64]. The di↵erential cross sec-

tions published by CMS [65, 66], and by ATLAS in the
h ! WW ⇤

! `⌫`⌫ decay channel [67], do not include
observables sensitive to CP-odd interference e↵ects and
are therefore not included in our combination. As yet,
di↵erential cross sections have not been published for any
other Higgs boson decay channels.
Of the distributions measured in the h ! �� and

h ! ZZ⇤
! 4` decay channels, only the signed ��jj

between the two jets in h+2 jet events is a CP-sensitive
observable. The signed ��jj probes the CP structure of
the Higgs boson’s interaction with gluons or weak bosons
in the gluon-fusion [68, 69] and vector-boson fusion [35]
production mechanisms, respectively, and is defined as

��jj = �1 � �2, (7)

where �1,2 are the azimuthal angles of the two highest-
pT jets in the event, ordered such that y1 > y2. The
asymmetry in the signed-��jj distribution is a model-
independent test of CP-violation and is defined as

A =
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where � is the measured fiducial cross section in each
region of ��jj .2 The asymmetry obtained by combining
the ATLAS data in the h ! �� and h ! ZZ⇤

! 4`
decay channels is 0.3± 0.2. If the non-zero value were to
persist in future high-precision measurements made with
larger datasets, it would be an indication of non-SM CP-
violation in the Higgs sector.
The global analysis framework discussed in Sec. III is

used to characterise the possible source of this asymme-
try. All four CP-odd operators presented in Eq. (1) can
produce an asymmetry in the signed ��jj distribution.
We show the one-dimensional constraints on the CP-odd
operators in Table I. All fits to the ��jj data result in
a good agreement with the existing measurements and
Table II summarises the obtained �2 values.
The signed ��jj distribution is mainly sensitive to the
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operators, with little sensitivity to the
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coe�cients are obtained by numerically maximising L
to obtain Lmax, and confidence intervals (CI) are con-
structed using the asymptotic behaviour of the likeli-
hood. The CI are defined by finding value(s) of c/⇤2

such that for a fixed CI

1� CI =

Z 1

�2 lnL(c/⇤2)+2 lnLmax

f�2(x;m dof) dx , (6)

with f�2(x;m dof) denoting the �2-distribution withm =
dim(c) degrees of freedom. Statistical correlations be-
tween observables in the h ! �� di↵erential cross sec-
tion measurements are taken into account in the fits by
constructing an appropriate version of Eq. (5).

The likelihood function is implemented in theGamma-
Combo package [63], which uses Minuit to carry out the
numerical maximisation and relevant profiling. The two-
dimensional coverage of the shown results correspond to
68.3% and 95.5% CI. The level of bias in the estimators

c/⇤2 and the accuracy of the coverage have been tested
using ensembles of pseudo-experiments generated around
the SM and benchmark points.

IV. RESULTS WITH EXISTING
MEASUREMENTS

The most constraining model-independent Higgs bo-
son measurements are the di↵erential cross sections in
the h ! �� and h ! ZZ⇤

! 4` decay channels. In
this analysis we use recent ATLAS measurements made
at

p
s = 13 TeV [42, 64]. The di↵erential cross sec-

tions published by CMS [65, 66], and by ATLAS in the
h ! WW ⇤

! `⌫`⌫ decay channel [67], do not include
observables sensitive to CP-odd interference e↵ects and
are therefore not included in our combination. As yet,
di↵erential cross sections have not been published for any
other Higgs boson decay channels.
Of the distributions measured in the h ! �� and

h ! ZZ⇤
! 4` decay channels, only the signed ��jj

between the two jets in h+2 jet events is a CP-sensitive
observable. The signed ��jj probes the CP structure of
the Higgs boson’s interaction with gluons or weak bosons
in the gluon-fusion [68, 69] and vector-boson fusion [35]
production mechanisms, respectively, and is defined as

��jj = �1 � �2, (7)

where �1,2 are the azimuthal angles of the two highest-
pT jets in the event, ordered such that y1 > y2. The
asymmetry in the signed-��jj distribution is a model-
independent test of CP-violation and is defined as

A =
�(0 < ��jj < ⇡)� �(�⇡ < ��jj < 0)

�(0 < ��jj < ⇡) + �(�⇡ < ��jj < 0)
,

where � is the measured fiducial cross section in each
region of ��jj .2 The asymmetry obtained by combining
the ATLAS data in the h ! �� and h ! ZZ⇤

! 4`
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used to characterise the possible source of this asymme-
try. All four CP-odd operators presented in Eq. (1) can
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servables, whereas kinematic information such as trans-
verse momentum distributions are instead used to con-
strain CP-even operators.

We find that there is a small asymmetry in two CP-
sensitive measurements of the signed azimuthal angle be-
tween the hadronic jets in h + 2 jet events, with a com-
bined value of 0.3 ± 0.2. However, we also find that the
current data cannot distinguish between di↵erent sources
of CP violation, with three blind directions when one
considers the four CP-odd operators that cause anoma-
lous Higgs boson interactions with weak bosons or glu-
ons. We then demonstrate how the blind directions in
the CP-odd coupling space can be removed using ob-
servables that can already be measured with the existing
LHC datasets. Building on these insights, we provide
projections for the upcoming LHC Run-3 and HL-LHC,
where the available dataset will increase by factors of 10
and 100, respectively.

The paper is organised as follows. We motivate the lin-
earised dimension-6 e↵ective field theory in Sec. II. Sec-
tion III provides an overview of technical aspects of our
analysis. The constraints on EFT operators obtained by
fits to published model-independent data are presented
in Sec. IV. We propose new measurements to be made in
Sec. V and show their expected impact on constraining
the di↵erent sources of CP violation in the Higgs sector.
Finally, we conclude in Sec. VI.

II. THEORETICAL FRAMEWORK

New CP-violating e↵ects in the Higgs boson’s inter-
actions with gluons or weak bosons can be introduced
through a minimal set of CP-odd dimension-6 opera-
tors [24]:

O
HG̃

= H†HGaµ⌫G̃a

µ⌫
, (1a)

O
HW̃

= H†HW aµ⌫W̃ a

µ⌫
, (1b)

O
HB̃

= H†HBµ⌫B̃µ⌫ , (1c)

O
HW̃B

= H†⌧aHBµ⌫W̃
aµ⌫ , (1d)

where H is the Higgs doublet and G,W,B are the
SU(3) ⇥ SU(2) ⇥ U(1) field strength tensors. The ⌧a

are the SU(2) generators. Fields with a tilde are the
dual tensors, e.g. G̃a

µ⌫
= "abcGbc

µ⌫
/2.

These operators could originate from complex phases
in the interactions between the Higgs boson and heavy
fermions, whose masses are far above the electroweak
scale. Additional complex phases in the SM Yukawa sec-
tor would be another source of CP-violation, e.g. in the
tt̄h interaction [25–28]. Any kinematic e↵ect from this in-
teraction would be degenerate with O

HG̃
in gluon-fusion

production as long as the mt threshold is not resolved
kinematically, which does not happen for our choice of
measurements. An associated blind direction is therefore
implied in our constraints.

The operators of Eq. (1) are well-motivated candidate
interactions for our analysis. They are closed under RGE
flow [29–33], allowing well-defined constraints. Further,
the small number of operators can be probed with a few
di↵erential distributions.
For completeness, analogous CP-even deformations to

the SM are also introduced (OHG, OHW , OHB , OHWB).
The e↵ective Lagrangian is then defined as

L = LSM +
X

i

ci
⇤2

Oi (2)

where the sum runs over the CP-even and CP-odd op-
erators. This allows us to split the amplitude into an
SM part, MSM, and a genuine dimension-6 part, Md6.
Including all dimension-6 e↵ects yields

|M|
2 = |MSM|

2 + 2Re (M?

SMMd6) +O(⇤�4). (3)

The integration over interference terms (proportional to
1/⇤2) vanishes when only CP-odd EFT operators con-
tribute [34] at dimension-6 because the SM amplitude is
CP-even and the integrated e↵ect of interfering the SM
amplitude with a CP-odd amplitude is zero. This means
that there is no contribution from the interference term
to the inclusive rate, or to CP-even observables such as
transverse momenta and invariant masses, and the only
contribution is to appropriately constructed CP-odd ob-
servables. This is not the case for terms proportional to
1/⇤4, which contain the squared dimension-6 amplitude
and produce a CP-even e↵ect regardless of the nature
of the operator. This has historically served as a moti-
vation to constrain CP-odd operators with momentum-
dependent observables in a range of production modes
[26, 28, 35–43]. However, such an approach is model-
dependent since it neglects dimension-8 operators that
interfere with the SM and in general produce similar
O(1/⇤4) e↵ects.
In this paper we limit ourselves to interference-only

e↵ects so the constraints on CP-odd operators will be
entirely derived from CP-odd observables, which are dis-
cussed in the next section. This approach is naturally
less sensitive compared to including |Md6|

2 terms so it
provides a conservative outlook into the future: if pertur-
batively meaningful constraints can be obtained in the
linearised approach, these will only be strengthened if
|Md6|

2 terms are included.
The interference-only contribution from each operator

to each observable is constructed using Madgraph5 [44]
and the SMEFT implementation of Ref. [45]. Event sam-
ples are produced separately for gluon-fusion and weak-
boson-fusion production at fixed values of ci = 1 and
⇤ = 1 TeV. These parton-level events are passed to
Pythia8 [46] to model the Higgs-boson decay, parton
showering, hadronisation and multiple parton interac-
tions. Rivet [47] is then used to select events in each
decay channel and to construct each observable accord-
ing to the selection criteria published in the experimen-
tal papers. The cross-section contribution in each bin

Need to construct CP sensitive observables in linearised 
framework                                                 

for example:
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is multiplied by �H!XX(ci)/�H(ci), to account for the
Higgs-boson branching fraction at the given point in EFT
coupling space. Interference-only predictions for each ob-
servable at other values of the Wilson coe�cients are ob-
tained by linear scaling.

The Standard Model prediction for the gluon fusion
process is determined using Powheg NNLOPS [48] and
scaled to the N3LO inclusive cross section calculation
with NLO electroweak corrections [49–52]). For vec-
tor boson fusion and Higgs boson production in asso-
ciation with a weak boson, the SM predictions are de-
termined using Powheg [53–56] and each is scaled to
the NNLO calculation with NLO electroweak corrections
applied [57–62]. These predictions are taken from the
experimental publications.
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We implement our statistical tests by constructing a
likelihood function L(c/⇤2) for all observables
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with Li(c/⇤2) denoting the likelihood of an individual
observable �i for a given vector of EFT coe�cients c/⇤2.
We assume Gaussian uncertainties on the h ! �� and
h ! 4` di↵erential cross-section measurements and con-
struct a covariance ⌃i of the total experimental uncer-
tainty such that
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with ⌧i = ⌧i(c/⇤2) denoting the expected cross-
section vector, which is constructed from the SM and
interference-only cross-section contributions discussed in
the previous section. Estimators (ĉ/⇤2) for the Wilson
coe�cients are obtained by numerically maximising L
to obtain Lmax, and confidence intervals (CI) are con-
structed using the asymptotic behaviour of the likeli-
hood. The CI are defined by finding value(s) of c/⇤2

such that for a fixed CI
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with f�2(x;m dof) denoting the �2-distribution withm =
dim(c) degrees of freedom. Statistical correlations be-
tween observables in the h ! �� di↵erential cross sec-
tion measurements are taken into account in the fits by
constructing an appropriate version of Eq. (5).

The likelihood function is implemented in theGamma-
Combo package [63], which uses Minuit to carry out the
numerical maximisation and relevant profiling. The two-
dimensional coverage of the shown results correspond to
68.3% and 95.5% CI. The level of bias in the estimators

c/⇤2 and the accuracy of the coverage have been tested
using ensembles of pseudo-experiments generated around
the SM and benchmark points.

IV. RESULTS WITH EXISTING
MEASUREMENTS

The most constraining model-independent Higgs bo-
son measurements are the di↵erential cross sections in
the h ! �� and h ! ZZ⇤

! 4` decay channels. In
this analysis we use recent ATLAS measurements made
at

p
s = 13 TeV [42, 64]. The di↵erential cross sec-

tions published by CMS [65, 66], and by ATLAS in the
h ! WW ⇤

! `⌫`⌫ decay channel [67], do not include
observables sensitive to CP-odd interference e↵ects and
are therefore not included in our combination. As yet,
di↵erential cross sections have not been published for any
other Higgs boson decay channels.
Of the distributions measured in the h ! �� and
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! 4` decay channels, only the signed ��jj

between the two jets in h+2 jet events is a CP-sensitive
observable. The signed ��jj probes the CP structure of
the Higgs boson’s interaction with gluons or weak bosons
in the gluon-fusion [68, 69] and vector-boson fusion [35]
production mechanisms, respectively, and is defined as

��jj = �1 � �2, (7)

where �1,2 are the azimuthal angles of the two highest-
pT jets in the event, ordered such that y1 > y2. The
asymmetry in the signed-��jj distribution is a model-
independent test of CP-violation and is defined as

A =
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where � is the measured fiducial cross section in each
region of ��jj .2 The asymmetry obtained by combining
the ATLAS data in the h ! �� and h ! ZZ⇤

! 4`
decay channels is 0.3± 0.2. If the non-zero value were to
persist in future high-precision measurements made with
larger datasets, it would be an indication of non-SM CP-
violation in the Higgs sector.
The global analysis framework discussed in Sec. III is

used to characterise the possible source of this asymme-
try. All four CP-odd operators presented in Eq. (1) can
produce an asymmetry in the signed ��jj distribution.
We show the one-dimensional constraints on the CP-odd
operators in Table I. All fits to the ��jj data result in
a good agreement with the existing measurements and
Table II summarises the obtained �2 values.
The signed ��jj distribution is mainly sensitive to the
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process is determined using Powheg NNLOPS [48] and
scaled to the N3LO inclusive cross section calculation
with NLO electroweak corrections [49–52]). For vec-
tor boson fusion and Higgs boson production in asso-
ciation with a weak boson, the SM predictions are de-
termined using Powheg [53–56] and each is scaled to
the NNLO calculation with NLO electroweak corrections
applied [57–62]. These predictions are taken from the
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with Li(c/⇤2) denoting the likelihood of an individual
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section vector, which is constructed from the SM and
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with f�2(x;m dof) denoting the �2-distribution withm =
dim(c) degrees of freedom. Statistical correlations be-
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decay channels is 0.3± 0.2. If the non-zero value were to
persist in future high-precision measurements made with
larger datasets, it would be an indication of non-SM CP-
violation in the Higgs sector.
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try. All four CP-odd operators presented in Eq. (1) can
produce an asymmetry in the signed ��jj distribution.
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struct a covariance ⌃i of the total experimental uncer-
tainty such that

Li(c/⇤
2) =

1q
(2⇡)k |⌃i|

e(�
1
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T⌃�1
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with ⌧i = ⌧i(c/⇤2) denoting the expected cross-
section vector, which is constructed from the SM and
interference-only cross-section contributions discussed in
the previous section. Estimators (ĉ/⇤2) for the Wilson
coe�cients are obtained by numerically maximising L
to obtain Lmax, and confidence intervals (CI) are con-
structed using the asymptotic behaviour of the likeli-
hood. The CI are defined by finding value(s) of c/⇤2

such that for a fixed CI

1� CI =
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with f�2(x;m dof) denoting the �2-distribution withm =
dim(c) degrees of freedom. Statistical correlations be-
tween observables in the h ! �� di↵erential cross sec-
tion measurements are taken into account in the fits by
constructing an appropriate version of Eq. (5).

The likelihood function is implemented in theGamma-
Combo package [63], which uses Minuit to carry out the
numerical maximisation and relevant profiling. The two-
dimensional coverage of the shown results correspond to
68.3% and 95.5% CI. The level of bias in the estimators

c/⇤2 and the accuracy of the coverage have been tested
using ensembles of pseudo-experiments generated around
the SM and benchmark points.

IV. RESULTS WITH EXISTING
MEASUREMENTS

The most constraining model-independent Higgs bo-
son measurements are the di↵erential cross sections in
the h ! �� and h ! ZZ⇤

! 4` decay channels. In
this analysis we use recent ATLAS measurements made
at

p
s = 13 TeV [42, 64]. The di↵erential cross sec-

tions published by CMS [65, 66], and by ATLAS in the
h ! WW ⇤

! `⌫`⌫ decay channel [67], do not include
observables sensitive to CP-odd interference e↵ects and
are therefore not included in our combination. As yet,
di↵erential cross sections have not been published for any
other Higgs boson decay channels.
Of the distributions measured in the h ! �� and

h ! ZZ⇤
! 4` decay channels, only the signed ��jj

between the two jets in h+2 jet events is a CP-sensitive
observable. The signed ��jj probes the CP structure of
the Higgs boson’s interaction with gluons or weak bosons
in the gluon-fusion [68, 69] and vector-boson fusion [35]
production mechanisms, respectively, and is defined as

��jj = �1 � �2, (7)

where �1,2 are the azimuthal angles of the two highest-
pT jets in the event, ordered such that y1 > y2. The
asymmetry in the signed-��jj distribution is a model-
independent test of CP-violation and is defined as

A =
�(0 < ��jj < ⇡)� �(�⇡ < ��jj < 0)

�(0 < ��jj < ⇡) + �(�⇡ < ��jj < 0)
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where � is the measured fiducial cross section in each
region of ��jj .2 The asymmetry obtained by combining
the ATLAS data in the h ! �� and h ! ZZ⇤

! 4`
decay channels is 0.3± 0.2. If the non-zero value were to
persist in future high-precision measurements made with
larger datasets, it would be an indication of non-SM CP-
violation in the Higgs sector.
The global analysis framework discussed in Sec. III is

used to characterise the possible source of this asymme-
try. All four CP-odd operators presented in Eq. (1) can
produce an asymmetry in the signed ��jj distribution.
We show the one-dimensional constraints on the CP-odd
operators in Table I. All fits to the ��jj data result in
a good agreement with the existing measurements and
Table II summarises the obtained �2 values.
The signed ��jj distribution is mainly sensitive to the

O
HG̃

and O
HW̃

operators, with little sensitivity to the
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asymmetry in the signed-��jj distribution is a model-
independent test of CP-violation and is defined as
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region of ��jj .2 The asymmetry obtained by combining
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decay channels is 0.3± 0.2. If the non-zero value were to
persist in future high-precision measurements made with
larger datasets, it would be an indication of non-SM CP-
violation in the Higgs sector.
The global analysis framework discussed in Sec. III is

used to characterise the possible source of this asymme-
try. All four CP-odd operators presented in Eq. (1) can
produce an asymmetry in the signed ��jj distribution.
We show the one-dimensional constraints on the CP-odd
operators in Table I. All fits to the ��jj data result in
a good agreement with the existing measurements and
Table II summarises the obtained �2 values.
The signed ��jj distribution is mainly sensitive to the
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with ATLAS data one finds
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servables, whereas kinematic information such as trans-
verse momentum distributions are instead used to con-
strain CP-even operators.

We find that there is a small asymmetry in two CP-
sensitive measurements of the signed azimuthal angle be-
tween the hadronic jets in h + 2 jet events, with a com-
bined value of 0.3 ± 0.2. However, we also find that the
current data cannot distinguish between di↵erent sources
of CP violation, with three blind directions when one
considers the four CP-odd operators that cause anoma-
lous Higgs boson interactions with weak bosons or glu-
ons. We then demonstrate how the blind directions in
the CP-odd coupling space can be removed using ob-
servables that can already be measured with the existing
LHC datasets. Building on these insights, we provide
projections for the upcoming LHC Run-3 and HL-LHC,
where the available dataset will increase by factors of 10
and 100, respectively.

The paper is organised as follows. We motivate the lin-
earised dimension-6 e↵ective field theory in Sec. II. Sec-
tion III provides an overview of technical aspects of our
analysis. The constraints on EFT operators obtained by
fits to published model-independent data are presented
in Sec. IV. We propose new measurements to be made in
Sec. V and show their expected impact on constraining
the di↵erent sources of CP violation in the Higgs sector.
Finally, we conclude in Sec. VI.

II. THEORETICAL FRAMEWORK

New CP-violating e↵ects in the Higgs boson’s inter-
actions with gluons or weak bosons can be introduced
through a minimal set of CP-odd dimension-6 opera-
tors [24]:

O
HG̃

= H†HGaµ⌫G̃a

µ⌫
, (1a)

O
HW̃

= H†HW aµ⌫W̃ a

µ⌫
, (1b)

O
HB̃

= H†HBµ⌫B̃µ⌫ , (1c)

O
HW̃B

= H†⌧aHBµ⌫W̃
aµ⌫ , (1d)

where H is the Higgs doublet and G,W,B are the
SU(3) ⇥ SU(2) ⇥ U(1) field strength tensors. The ⌧a

are the SU(2) generators. Fields with a tilde are the
dual tensors, e.g. G̃a

µ⌫
= "abcGbc

µ⌫
/2.

These operators could originate from complex phases
in the interactions between the Higgs boson and heavy
fermions, whose masses are far above the electroweak
scale. Additional complex phases in the SM Yukawa sec-
tor would be another source of CP-violation, e.g. in the
tt̄h interaction [25–28]. Any kinematic e↵ect from this in-
teraction would be degenerate with O

HG̃
in gluon-fusion

production as long as the mt threshold is not resolved
kinematically, which does not happen for our choice of
measurements. An associated blind direction is therefore
implied in our constraints.

The operators of Eq. (1) are well-motivated candidate
interactions for our analysis. They are closed under RGE
flow [29–33], allowing well-defined constraints. Further,
the small number of operators can be probed with a few
di↵erential distributions.
For completeness, analogous CP-even deformations to

the SM are also introduced (OHG, OHW , OHB , OHWB).
The e↵ective Lagrangian is then defined as

L = LSM +
X

i

ci
⇤2

Oi (2)

where the sum runs over the CP-even and CP-odd op-
erators. This allows us to split the amplitude into an
SM part, MSM, and a genuine dimension-6 part, Md6.
Including all dimension-6 e↵ects yields

|M|
2 = |MSM|

2 + 2Re (M?

SMMd6) +O(⇤�4). (3)

The integration over interference terms (proportional to
1/⇤2) vanishes when only CP-odd EFT operators con-
tribute [34] at dimension-6 because the SM amplitude is
CP-even and the integrated e↵ect of interfering the SM
amplitude with a CP-odd amplitude is zero. This means
that there is no contribution from the interference term
to the inclusive rate, or to CP-even observables such as
transverse momenta and invariant masses, and the only
contribution is to appropriately constructed CP-odd ob-
servables. This is not the case for terms proportional to
1/⇤4, which contain the squared dimension-6 amplitude
and produce a CP-even e↵ect regardless of the nature
of the operator. This has historically served as a moti-
vation to constrain CP-odd operators with momentum-
dependent observables in a range of production modes
[26, 28, 35–43]. However, such an approach is model-
dependent since it neglects dimension-8 operators that
interfere with the SM and in general produce similar
O(1/⇤4) e↵ects.
In this paper we limit ourselves to interference-only

e↵ects so the constraints on CP-odd operators will be
entirely derived from CP-odd observables, which are dis-
cussed in the next section. This approach is naturally
less sensitive compared to including |Md6|

2 terms so it
provides a conservative outlook into the future: if pertur-
batively meaningful constraints can be obtained in the
linearised approach, these will only be strengthened if
|Md6|

2 terms are included.
The interference-only contribution from each operator

to each observable is constructed using Madgraph5 [44]
and the SMEFT implementation of Ref. [45]. Event sam-
ples are produced separately for gluon-fusion and weak-
boson-fusion production at fixed values of ci = 1 and
⇤ = 1 TeV. These parton-level events are passed to
Pythia8 [46] to model the Higgs-boson decay, parton
showering, hadronisation and multiple parton interac-
tions. Rivet [47] is then used to select events in each
decay channel and to construct each observable accord-
ing to the selection criteria published in the experimen-
tal papers. The cross-section contribution in each bin

cp-violating tth interactions degenerate 
with       for our observables (blind 
direction)
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Future sensitivity can be improved by separating enriched regions of 
GF and WBF and by studying H->4l decay angles, e.g. 
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FIG. 2: Constraints on the CP-even operators from ��jj

measurements only, and from a combination of the ��jj and
jet-multiplicity measurements. The best-fit points are shown
within the contours. Inner and outer shaded regions represent
the 68.3% and 95.5% CI, respectively.

V. ENHANCING THE SENSITIVITY TO
CP-VIOLATION IN THE HIGGS SECTOR

The results of the fit to existing data raise the ques-
tion of how we can improve sensitivity to CP-odd ef-
fects through targeted measurements. In particular, the
current ATLAS ��jj measurements do not distinguish
between CP-violating interactions in gluon fusion and
vector-boson fusion production of the h+2 jet final state.
This degeneracy can be trivially removed by separating
the measurement into regions that enhance either gluon
fusion or vector-boson fusion. ATLAS have constrained
CP-odd operators that impact vector-boson fusion in a
VBF-enhanced phase space in the h ! ⌧⌧ decay chan-
nel [70]. However, CP-odd operators that impact gluon
fusion were not considered and the CP-sensitive observ-
ables were not presented in a well-defined fiducial region.
We are therefore not able to include the results in our
combination.

It is also important to address the lack of sensitivity
to the O

HB̃
and O

HW̃B
operators. These operators can

be probed through the study of angular production and
decay observables in Higgs boson production processes
[71–82]. For the h ! ZZ⇤

! l+l�l0+l0� system, an angle
that is particularly sensitive to CP is the � variable [82]
defined through

cos� =
(p

l� ⇥ pl+) · (pl0� ⇥ pl0+)p
(pl� ⇥ pl+)2 (pl0� ⇥ pl0+)2

����
h

, (8)

calculated in the Higgs boson centre-of-mass frame. This
observable could already be measured with existing data.
Decay angles have been used by both ATLAS and CMS
to search for CP-violation in the H ! ZZ⇤

! 4` and
H ! WW ⇤

! `⌫`⌫ decay channels [83, 84]. However, in
these searches, the detector-level data were analysed us-
ing either boosted decision trees or matrix-element-based
likelihood analyses and the results cannot be interpreted
in terms of the CP-odd operators we consider. The re-
sults are consistent with zero CP-asymmetry.

The impact that additional measurements could have
in a global analysis is studied using pseudo-data assum-
ing 36/fb of integrated luminosity at

p
s = 13 TeV. In

both the h ! ZZ⇤
! 4` and h ! �� decay channels, the

pseudo-data are constructed for the signed ��jj and jet
multiplicity distributions using the SM expectation and
the measured uncertainties in data, since the measure-
ments are dominated by either signal or background sta-
tistical uncertainties. A two-bin signed��jj distribution
is constructed in VBF-enhanced and VBF-suppressed re-
gions in the h ! �� channel, using the published di↵er-
ential cross sections and SM expectations for the Njet � 2
and VBF-enhanced phase spaces from [42].

The results of the global analysis of the pseudo-data
are shown in Fig. 3 (left) when constraining the O

HG̃

and O
HW̃

operator coe�cients, with all other Wilson
coe�cients set to zero. It is clear that these opera-
tors can be distinguished by appropriate measurements
of signed-��jj in VBF-enhanced and VBF-suppressed
phase spaces, and the constraints are further improved
with the addition of the � decay-angle observable. Fur-
thermore, the addition of the � variable allows the ex-
traction of the O

HB̃
or O

HW̃B
coe�cient. Figure 3

(right) shows the constraint obtained on the O
HB̃

oper-
ator coe�cient using the decay angle information alone,
and the improvement in the 2D plane when the signed
��jj information is added.

The combination of all CP-sensitive observables is im-
portant when constraining all operators simultaneously.
To demonstrate this we recalculate the 2D constraints af-
ter marginalising over the other CP-odd operators. The
marginalisation is subject to a perturbativity constraint
such that

X

i

|�i

BSM⇥SM|/�SM < 0.5, (9)

where �i

BSM⇥SM is the cross section of the interference
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FIG. 3: Left: Individual constraints on the coe�cients of the leading CP-violating operators a↵ecting gluon fusion (O
HG̃

) and
vector-boson fusion (O

HW̃
). The blind direction resulting from inclusive ��jj measurements is resolved through the use of

VBF-enhanced and VBF-suppressed kinematic regions. Right: Individual constraints on two CP-violating interactions a↵ecting
vector-boson fusion (O

HW̃
and O

HB̃
). Inner and outer shaded regions represent the 68.3% and 95.5% CI, respectively.
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FIG. 4: Individual constraints on two CP-violating interactions a↵ecting a↵ecting gluon fusion (O
HG̃

) and vector-boson
fusion (O

HW̃
) (left) and a↵ecting vector-boson fusion (O

HW̃
and O

HB̃
) (right). The top row shows the 2D constraints after

marginalising over other CP-odd operators with the constraint that the associated Wilson coe�cients satisfy the condition in
Eq. (9). The bottom row shows the same 2D constraints after marginalisation over other CP-odd operators, with no conditions
on the size of the Wilson coe�cients. Inner and outer shaded regions represent the 68.3% and 95.5% CI, respectively.
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term in bin i of the observable.3 This requirement en-
sures that the perturbative series is well-behaved.

With the current data the marginalisation over param-
eters within the perturbativity constraint does not have
a significant e↵ect, as shown in the top plots of Fig. 4.
If we drop this constraint the blind directions are clear
(bottom row of Fig. 4), showing that as the measure-
ments improve the combination of observables becomes
more important.

Although the blind directions can be lifted with the
current dataset, the obtained constraints on CP-odd op-
erators that a↵ect the Higgs boson coupling to weak
bosons are relatively weak (ci/⇤2 > 1 TeV�2). This
will be improved by increasing the integrated luminos-
ity to increase the precision of these measurements. In
Fig. 5 and Table III, we present the expected 1D and 2D
constraints with larger datasets of 300/fb (corresponding
to the end of LHC Run-3) and 3000/fb (corresponding
to the end of HL-LHC), for the full combination of the
di↵erential measurements considered here.

As expected, the results improve dramatically and the
constrained values of ci/⇤2 approach unity. To demon-
strate the perturbative validity of these constraints, the
magnitude of the interference contribution to the most
sensitive di↵erential cross section, relative to the SM con-
tribution, is estimated using Eq. (9) and summarised in
Table IV for datasets of 300/fb and 3000/fb.

It is worth noting that the Run-3 and HL-LHC con-
straints presented above are simple extrapolations of cur-
rent ATLAS results (and those that are already possi-
ble) to higher luminosities, and a number of other mea-
surements can in principle be made that would tighten
the constraints further. For example, all the constraints
should trivially improve by about a factor of

p
2 if the

proposed measurements are made by both ATLAS and
CMS. In addition, as the datasets increase, splitting the
measurement of the signed-��jj observable into VBF-
enhanced and VBF-suppressed phase spaces will also
be possible in the H ! ZZ⇤ decay channel. Fur-
thermore, model-independent ��jj measurements in the
H ! WW ⇤ and H ! ⌧⌧ decay channels, as well as

Coe�cient⇥
TeV�2

⇤
36.1 fb�1 300 fb�1 3000 fb�1

c
HG̃

/⇤2 [�0.19, 0.19] [�0.067, 0.067] [�0.021, 0.021]
c
HW̃

/⇤2 [�11, 11] [�3.8, 3.8] [�1.2, 1.2]
c
HB̃

/⇤2 [�5.9, 5.9] [�2.1, 2.1] [�0.65, 0.65]
c
HW̃B

/⇤2 [�14, 14] [�4.9, 4.9] [�1.5, 1.5]

TABLE III: Expected 1D constraints on Wilson coe�cients
for each EFT operator, in units of TeV�2, after marginalising
over all other coe�cients.

3
The modulus is taken to avoid cancellation that would otherwise

result from summing across all bins of the measured observable.

Coe�cient Allowed magnitude of CP-odd contribution⇥
TeV�2

⇤
300 fb�1 3000 fb�1

c
HG̃

/⇤2 33% 10%
c
HW̃

/⇤2 47% 15%
c
HB̃

/⇤2 8% 2%
c
HW̃B

/⇤2 25% 8%

TABLE IV: Expected sum of the moduli of the positive and
negative interference contributions from CP-odd operators
relative to the SM cross-section, see Eq. (9), allowable by
the constraints in Table III at a given luminosity.

di↵erential cross sections as a function of the decay an-
gles in H ! WW ⇤

! `⌫`⌫ decay would add further
constraints. Finally, model-independent di↵erential mea-
surements of other processes will be possible by the end
of Run-3 and/or HL-LHC, with CP-sensitive di↵erential
information expected for Higgs boson production in as-
sociation with a weak boson [85] or a top-antitop pair
[27, 28]. The measurements of Higgs boson production
in association with a weak boson would add additional
information that could constrain the O

HW̃
, O

HB̃
and

O
HW̃B

operators. Measurements of Higgs boson pro-
duction in association with a top-antitop pair would con-
strain CP-violating complex phases in the EFT operators
corresponding to the Yukawa sector, thus removing the
blind direction between those operators and O

HG̃
that is

implicit in this analysis.

VI. CONCLUSIONS

A better understanding of the Higgs-boson properties
remains a crucial part of the LHC phenomenology pro-
gramme, o↵ering a wealth of opportunities to connect
the electroweak scale with other well-established features
of beyond-the-SM physics. In this sense, the search for
CP-violation in the Higgs sector is a crucial piece of the
puzzle of the TeV scale.
In this paper, we consider CP-violating operators in

the context of gluon-fusion and vector-boson fusion pro-
duction of Higgs bosons in association with jets. By fo-
cusing on the SMEFT approach, linearised in the Wilson
coe�cients, we can separate CP-odd Higgs interactions
from CP-even ones. The former are then contained in
asymmetries of genuinely CP-odd observables.
We find that there is currently a small 0.3± 0.2 asym-

metry in model-independent h + 2 jet event measure-
ments. Given the lack of further information that would
be straightforward to obtain, the source of this asymme-
try cannot be well characterised. Although it is likely
that this asymmetry originates from statistical fluctu-
ations, we use its presence to discuss avenues to im-
prove the measurements with existing data. In partic-
ular, separating the weak and strong production of the
Higgs boson, and supplementing the current analyses
with precision measurements of the CP-sensitive angle

Marginalised over other coefficients
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CPV in HZZ - a case study
•  H->ZZ-> 4l standard candle to search for CPV in Higgs sector

•  New physics unlikely to induce only one new operator

• Easier to disentangle EFT operators in the production, rather than 
decay

• Three body phase space 
so 3x3-4=5 kinematical 
variables completely 
define the final state

• Ignoring the boost 
there are 4:
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l lZ

Reconstruction: BDRS, …

How much information does 
process provide differentially?

HZ boosted, reconstructed 
with fat jet

Free kinematic parameters

If we separate each variable into 10 bins:

1000 numbers per energy bin to 

encapsulate full information

With some analysis, we can reduce 
that number to 9 per energy bin

[Banerjee, Englert, Gupta, MS ’18]

[Butterworth, Davidson, Rubin, Salam ’08]
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The ff->HZ interactions are defined by

Process in terms of helicity amplitudes:

Only a finite number of helicity amplitudes receive corrections up 
to Dim-6 order

= 3 x 3 = 9

Finally, 9 terms including 6 interference terms between different Z 
helicities
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3

FIG. 1. Diagram showing the angles used to isolate the LT interference terms. Note that in fact two di↵erent frames of reference
are represented: the CoM frame of the Zh system (in which ' and ⇥ are defined) and the CoM frame of the Z (in which ✓ is
defined). We define the Cartesian axes {x, y, z} the Zh centre-of-mass frame, with z identified as the direction of the Z-boson;
y identified as the normal to the plane of the Z and beam axis; finally x is defined such that it completes the right-handed set.

to probe as this mode does not interfere with the domi-
nant SM longitudinal mode. However, the longitudinal-
transverse (LT) interference term is present at the level
of the Z-decay products and vanishes only if we inte-
grate inclusively over their phase space.2 To recover this
interference term and, in general, to maximally discrimi-
nate the transverse mode from the longitudinal mode, we
must utilise the full dependence of the di↵erential cross-
section on ⇥, and the angular variables related to the Z
decay products (as defined in the coordinate system in
Fig. 1). Analytically the amplitude can be most conve-
niently written in terms of '̂, the azimuthal angle of the
positive-helicity lepton and ✓̂, its polar angle in the Z
rest frame. In terms of these variables the amplitude is
simply given by,

Ah(ŝ,⇥, ✓̂, �̂) =
�i

p
2gZ

`

�Z

X

�

M
�

�
(ŝ,⇥)dJ=1

�,1 (✓̂)ei�'̂,(5)

where dJ=1
�,1 (✓̂) are the Wigner functions (see for eg.

Ref. [45]), �Z is the Z-width and gZ
`

= g(T `

3 �

Q`s2✓W )/c✓W . Given that the polarisation of the final
state lepton is not experimentally accessible, we express
the squared amplitude (after summing over the final lep-
ton polarisations) in terms of ✓ and ', the analogous

2 This is analogous to the case of double gauge boson production
where a similar situation arises for certain triple gauge boson de-
formations that contribute to helicity amplitudes that are sub-
dominant in the SM [41–44].

angles for the positively-charged lepton,
X

L,R

|A(ŝ,⇥, ✓,�)|2 = ↵L|Ah(ŝ,⇥, ✓,�)|2

+ ↵R|Ah(ŝ,⇥,⇡ � ✓,⇡ + ')|2, (6)

where ↵L,R = (gZ
lL,R

)2/[(gZ
lL
)2 + (gZ

lR
)2] is the fraction

of Z ! `` decays to leptons with left-handed (right-
handed) chiralities. The above equation follows from the
fact that for left-handed chiralities, the positive-helicity
lepton is the positively-charged lepton, whereas it is the
negatively-charged lepton for right-handed chiralities, so
that for the latter case (✓̂, �̂) = (⇡ � ✓,⇡ + '). Using
Eq. (3), Eq. (5) and Eq. (6) one can write the full angu-
lar dependance of the squared amplitude, which leads to
nine angular functions of ⇥, ✓ and � (see also [33, 46, 47]),

X

L,R

|A(ŝ,⇥, ✓,�)|2 = aLL sin2 ⇥ sin2 ✓ + a1
TT

cos⇥ cos ✓

+ a2
TT

(1 + cos2 ⇥)(1 + cos2 ✓) + cos' sin⇥ sin ✓

⇥ (a1
LT

+ a2
LT

cos ✓ cos⇥) + sin' sin⇥ sin ✓

⇥ (ã1
LT

+ ã2
LT

cos ✓ cos⇥) + aTT 0 cos 2' sin2 ⇥ sin2 ✓

+ ãTT 0 sin 2' sin2 ⇥ sin2 ✓. (7)

The subscripts of the above coe�cients denote the Z-
polarisation of the two interfering amplitudes, with TT 0

denoting the interference of two transverse amplitudes
with opposite polarisations. These coe�cients should be
thought of as independently-measurable observables.

• 9 coefficient are 9 angular moments for pp > H(Z>ll)

• They contain all kinematic information of the process

To extract use analog to Fourier analysis

Find reciprocal vector (weight function)

Calculate Dunietz, Quinn, Snyder,  Toki & Lipkin (1991)  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2 ̃ZZ

TABLE II. Contribution of the di↵erent anomalous couplings
in Eq. (1) to the angular coe�cients in Eq. (7) up to lin-
ear order. We have neglected subdominant contributions in
� =

p
ŝ/(2mZ), with the exception of the next-to-leading

EFT contribution to aLL, that we retain in order to keep the
leading e↵ect of the �ĝ

h

Zf term. Here ✏LR = ↵L � ↵R, G =

gg
Z

f

q
(gZ

lL
)2 + (gZ

lR
)2/(c✓W �Z) and �Z is the Z-width. For

the SM part our results are in complete agreement with
Ref. [48].

Expressions for the nine coe�cients above in terms
of the anomalous couplings are given in Table II. No-
tice that powers of � =

p
ŝ/(2mZ) lead to a paramet-

ric enhancement of the coe�cients, whereas factors of
✏LR = ↵L � ↵R ⇡ 0.16 lead to a parametric suppression.
The latter suppression arises due to the accidental fact
that the Z-boson has very similar couplings to left and
right-handed leptons. The dominant EFT contribution
is that of gh

Zf
to aLL. This coe�cient also receives a

subdominant contribution from �ĝh
ZZ

. A linear combina-
tion of ZZ and gh

Zf
gives the dominant contribution to

5 of the above coe�cients, namely: a1
TT

, a2
TT

, a1
LT

, a2
LT

and a1
TT 0 . Similarly, ̃ZZ is the only coupling that con-

tributes to the three CP-violating parameters: ã1
LT

, ã2
LT

and ã1
TT 0 .

As anticipated, the parametrically-largest contribution
is to the LT interference terms,

a2
LT

4
cos' sin 2✓ sin 2⇥+

ã2
LT

4
sin' sin 2✓ sin 2⇥. (8)

By looking at the dependance of aLL, a2LT
and ã2

LT
on

the initial quark helicity, �, (see Table II) it is clear that
the linear combination of gh

Zf
couplings that enters a2

LT

and ã2
LT

for the pp ! Zh process is again gh
Zp defined

in Eq. (4). Once gh
Zp is very-precisely constrained by

constraining aLL at high energies, one can separate the
contribution of ZZ to the 2 coe�cients mentioned above.
In the following sections we try to isolate these terms in
our experimental analysis in order to constrain ZZ and

̃ZZ . Notice that the above terms give no contribution
if we integrate inclusively over either ⇥, ✓ or '. It is
therefore highly non-trivial to access the LT interference
term if one is not guided by the analytical form above.
Finally, we discuss how to constrain �ĝh

ZZ
. This cou-

pling only rescales the SM hZZ coupling and hence all
SM di↵erential distributions. In order to constrain this
coupling one needs to access its contribution to aLL,
which is subdominant in � (see Table II). Ideally, one
can perform a fit to the di↵erential distribution with re-
spect to ŝ to extract both the dominant and subdominant
pieces. In this work we will study the di↵erential distri-
bution with respect to ŝ in two ranges, a low and high
energy range, in order to individually constrain both gh

ZZ

and gh
Zp. We discuss this in detail in the following sec-

tion.
We have thus identified four observables to constrain

the four anomalous couplings in Eq. (1); these are: the
di↵erential pp ! Zh cross-section with respect to ŝ at
high and low energies, and the angular observables a2

LT

and ã2
LT

. While we have chosen the observables that
receive the largest EFT corrections parametrically, ide-
ally one should use all the information contained in the
nine coe�cients in Eq. (7) (especially in the unsuppressed
a2
TT

, aTT 0 and ãTT 0) to obtain the strongest possible con-
straints on the Higgs anomalous couplings in Eq. (1). We
leave this for future work.
We have so far considered only the e↵ect of the anoma-

lous Higgs couplings in Eq. (1). The pp ! Z(`+`�)h(bb)
process, however, also gets contributions [12] from oper-
ators that rescale the hbb and Zf̄f couplings (that we
parametrise here by �ĝh

bb
and �ĝZ

f
respectively) and from

the vertices,

Z�

h

v
Aµ⌫Zµ⌫ + ̃Z�

h

v
Aµ⌫Z̃µ⌫ . (9)

The e↵ect of these couplings can be incorporated by sim-
ply replacing in all our expressions,

�ĝh
ZZ

! �ĝh
ZZ

+ �ĝh
bb
+ �ĝZ

f

ZZ ! ZZ +
Qfe

gZ
f

Z�

̃ZZ ! ̃ZZ +
Qfe

gZ
f

̃Z� , (10)

where for the last two replacements we have assumed
ŝ � m2

Z
. At the pp ! Zh level, the last two replacements

become ZZ ! ZZ+0.3 Z� , ̃ZZ ! ̃ZZ+0.3 ̃Z� . All
these degeneracies can be resolved in a straightforward
way by including LEP Z-pole data and information from
other Higgs production and decay channels.

III. ANALYSIS AND RESULTS

The following analysis is performed for
p
s = 14 TeV.

We base our analysis strategy on the one described in
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Comparison of amplitude coefficients and 
their respective moments

small, accidental 
cancellation

growth with energy
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of the anomalous couplings are given in Table II. No-
tice that powers of � =
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ŝ/(2mZ) lead to a paramet-
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By looking at the dependance of aLL, a2LT
and ã2
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the initial quark helicity, �, (see Table II) it is clear that
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and ã2
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Zp defined

in Eq. (4). Once gh
Zp is very-precisely constrained by

constraining aLL at high energies, one can separate the
contribution of ZZ to the 2 coe�cients mentioned above.
In the following sections we try to isolate these terms in
our experimental analysis in order to constrain ZZ and
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if we integrate inclusively over either ⇥, ✓ or '. It is
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Finally, we discuss how to constrain �ĝh

ZZ
. This cou-

pling only rescales the SM hZZ coupling and hence all
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bution with respect to ŝ in two ranges, a low and high
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the four anomalous couplings in Eq. (1); these are: the
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. At the pp ! Zh level, the last two replacements

become ZZ ! ZZ+0.3 Z� , ̃ZZ ! ̃ZZ+0.3 ̃Z� . All
these degeneracies can be resolved in a straightforward
way by including LEP Z-pole data and information from
other Higgs production and decay channels.
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in Eq. (4). Once gh
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constraining aLL at high energies, one can separate the
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our experimental analysis in order to constrain ZZ and
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coupling one needs to access its contribution to aLL,
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high and low energies, and the angular observables a2

LT

and ã2
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LT

, ã2
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A Triple Differential observable

Dominant cross-helicity CP even & odd angular moment
[Banerjee, Gupta, Reines, MS ’19]
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Sensitivity result
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-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

δg� h
ZZ

κ Z
Z

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

δg� h
ZZ

κ Z
Z

CP-odd:
CP-even:

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

δg� h
ZZ

κ γ
γ

All angular moments



Summary
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 CP violation in the Higgs sector a likely ingredient 
for electroweak baryogenesis 


-> with reasonably large phases

 Necessary to exploit all channels simultaneously

It can be beneficial to project onto maximum set of 
kinematically independent moments to obtain optimal 

sensitivity


