Search for di-Higgs production at 13 TeV and prospects for HL-LHC with the ATLAS detector

Alessandra Betti on behalf of the ATLAS Collaboration

Higgs Couplings 2019, Oxford 02/10/2019

(ロ) (部) (注) (注) (注) (10,000)

Higgs-boson pairs can be produced at the LHC via gluon-gluon fusion (ggF), accounting for more than 90% of the total cross section, via two Standard Model (SM) diagrams at LO:

box diagram (B) with top-quark Yukawa coupling and triangle diagram (T) with also the trilinear Higgs self-coupling

- In the SM destructive interference yields a small cross section of $\sigma_{voF}^{SM}(pp \to HH) = 33.5~{\rm fb}$ at 13 TeV
- Needs very high statistics to be observed, but interesting to set an upper limit on the overall cross section and direct constraints on the Higgs self-coupling $\lambda_{HHH} = \frac{m_{H}^2}{2\nu}$
- Beyond Standard Model (BSM) physics could manifest as modifications of the couplings changing the production rate and the kinematics

◆□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □▶</p>

Higgs pair production at the LHC

Considering variations of the couplings, with two diagrams contributing at LO:

- B=box diagram, amplitude proportional to κ_t^2 , $\kappa_t = y_t / y_t^{SM}$
- T=triangle diagram, amplitude proportional to $\kappa_t \kappa_\lambda$, $\kappa_\lambda = \lambda_{HHH} / \lambda_{HHH}^{SM}$

Amplitude:
$$A(\kappa_t, \kappa_\lambda) = \kappa_t^2 B + \kappa_t \kappa_\lambda T$$

Cross section

 $\sigma(\kappa_t, \kappa_\lambda) \sim \kappa_t^4 |B|^2 + \kappa_t^3 \kappa_\lambda (BT + TB) + \kappa_t^2 \kappa_\lambda^2 |T|^2$

- cross section: 2nd order polynomial in κ_λ
- kinematics depends on relative contributions and interference of the two diagrams modifying the m_{HH} distribution

 \rightarrow information used in the double-Higgs analyses to set constraints on κ_{λ}

Many different final states in the Higgs pair decay

di-Higgs decay BRs given by all possible combinations of observed Higgs decays:

ATLAS di-Higgs searches performed in 6 decay channels using 36 $\rm fb^{-1}$ of LHC 13 TeV pp collisions data:

- *bbbb*: highest BR
- $b\bar{b}\tau^+\tau^-$: good compromise between high BR and clean signature
- $b\bar{b}\gamma\gamma$: clean signature from the γ s
- 3 most sensitive channels
 - $b\bar{b}W^+W^-$
 - W⁺W⁻W⁺W⁻
 - $W^+W^-\gamma\gamma$

3 channels exploiting high BR and clean signature of the $\gamma \rm s,$ but difficult reconstruction of the Higgs candidate in W^+W^-

ATLAS di-Higgs analyses: bbbb

- *b*-jet triggers
- At least 4 b-tagged jets
- 4 jets b-tagged jets used to build the Higgs candidates, with pairing based on angular and invariant mass information
- Signal region defined by 2D requirements in the Higgs boson candidate's mass plane
- Largest background: QCD \rightarrow data-driven from control regions
- Final discriminant variable: m_{HH}

SM double-Higgs signal

Multijet background

arXiv:1804.06174. arXiv:1906.02025 11116 Data NR HH x = = 13 TeV, 27.5 fb ĝ $HH \rightarrow b\bar{b}b\bar{b}$ ---- NR HH x. = 1 10 NR HH x. = 10 Resolved Signal Region 10 In 10 Multilet Hadronic ff Semi-lentonic f StateSyst Uncertaint 10 ha/Pred.

Reconstructed m_{HH} [GeV]

- Signal region inside the inner red dashed curve
- Validation region outside the signal region and within the orange circle
- Control region outside the validation region and within the yellow circle

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ATLAS di-Higgs analyses: $b\bar{b}\tau^+\tau^-$

- Divided in two channels depending on τ -lepton pair decay mode: $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$
- *τ*_{lep}*τ*_{had}:
 - single-lepton (SLT) and lepton- τ_{had} (LTT) triggers
 - 1 light lepton (e/ μ) and 1 au_{had} with opposite charge
- *T*had *T*had[™]
 - single- τ_{had} and di- τ_{had} triggers
 - 2 τ_{had} with opposite charge
- 2 *b*-tagged jets
- Main backgrounds: $t\bar{t}, Z \rightarrow \tau \tau$ + heavy flavour jets and QCD \rightarrow data-driven backgrounds with jets faking τ_{had}

둚

104

10

10

• Final discriminant variable: Boosted Decision Tree (BDT) score distribution

TLAS

12 ToV 26 1 fb

LTT 2 b-tags

• Simultaneous fit of 3 categories: $\tau_{lep}\tau_{had}$ SLT, $\tau_{lep}\tau_{had}$ LTT and $\tau_{had}\tau_{had}$

arXiv:1808.00336, arXiv:1906.02025

Alessandra Betti

ATLAS di-Higgs analyses: $b\bar{b}\gamma\gamma$

- Di-photon triggers
- $\bullet\,$ At least 2 γ and at least 2 jets
- 2 categories: 2 b-tagged jets and 1 b-tagged jet
- \bullet Signal region defined by: 105 $< m_{\gamma\gamma} <$ 160 GeV, 90 $< m_{jj} <$ 140 GeV
- Final discriminant variable: $m_{\gamma\gamma}$
- Continuum $\gamma\gamma$ + jets background modelled in $m_{\gamma\gamma}$ with a functional form obtained from a fit to the data and single Higgs background described by a double-sided Crystal Ball determined from a fit to simulated samples
- Simultaneous fit of 2 categories: 1 b-tag and 2 b-tags

arXiv:1807.04873, arXiv:1906.02025

ATLAS di-Higgs analyses: $b\bar{b}W^+W^-$, $W^+W^-W^+W^-$, $W^+W^-\gamma\gamma$

bbW+*W*-: arXiv:1811.04671, arXiv:1906.02025

- *bblvqq* final state
- Event-counting analysis (1 category)

 $W^+W^-W^+W^-$: arXiv:1811.11028, arXiv:1906.02025

- Three channels: *lvlv4q* (2 leptons), *lvlvlv2q* (3 leptons) and *lvlvlvlv* (4 leptons)
- Divided in categories according to the lepton flavour, the number of same-flavour and opposite charge lepton pairs and invariant mass
- Event-counting analysis with a simultaneous fit of 9 categories

 $W^+W^-\gamma\gamma$: arXiv:1807.08567, arXiv:1906.02025

- *lvqq* final state
- Final discriminant variable: $m_{\gamma\gamma}$ (1 category)

6 decay channels included in the di-Higgs combination with 36 $\rm fb^{-1}$ to set a 95% C.L. upper limit on the ggF di-Higgs production cross section

arXiv:1906.02025

Observed (expected) combined upper limit of $6.9 \times \sigma_{ggF}^{SM}$ ($10 \times \sigma_{ggF}^{SM}$) Results dominated by statistical uncertainties on data, ~10% impact of systematics on expected limit

・ロト (周) (目) (目) (日) (日)

New analysis recently performed with full Run-2 dataset of 139 ${\rm fb}^{-1}$

- Looking for the HH decays with $H \rightarrow b\bar{b}$ and $H \rightarrow WW, ZZ, \tau\tau \rightarrow l\nu l\nu$
- At least two *b*-tagged jets and exactly two leptons (e/μ) with opposite charge
- 2 categories: same-flavour (SF) and different-flavour (DF) for the lepton pair
- Signal region defined by: $20 < m_{ll} < 60$ GeV, $110 < m_{bb} < 140$ GeV and a cut on a discriminant built from the output of a multiclass deep neural network (DNN) classifier ($d_{HH} > 5.45(5.55)$ for SR-SF (SR-DF))
- Event-counting analysis with a simultaneous fit of 2 signal regions: SF and DF

- Set a 95% C.L. upper limit on the ggF di-Higgs production cross section: Observed (expected) upper limit of $40 \times \sigma_{ggF}^{SM}$ ($29 \times \sigma_{ggF}^{SM}$)
- Limits comparable to the previous leading searches for di-Higgs production

 \rightarrow interesting new channel to include in the full Run-2 di-Higgs combination!

	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$	Observed
$\sigma (gg \rightarrow HH) [pb]$	0.5	0.6	0.9	1.3	1.9	1.2
$\sigma\left(gg\rightarrow HH\right)/\sigma^{\rm SM}\left(gg\rightarrow HH\right)$	14	20	29	43	62	40

Combined results: Higgs self-coupling

3 most sensitive channels included in the di-Higgs combination with 36 fb⁻¹ to set 95% C.L. upper limits on the ggF di-Higgs production cross section as a function of κ_{λ} :

 Comparing to the theoretical cross section predictions,
 95% C.L. allowed k_λ range:

 $-5 < \kappa_{\lambda} < 12$

arXiv:1906.02025					
	Allowed κ_{λ} interval at 95% CL				
Final state	Obs.	Exp.	Exp. stat.		
$b\bar{b}b\bar{b}$	-10.9 - 20.1	-11.6 - 18.8	-9.8 - 16.3		
$b\bar{b}\tau^+\tau^-$	-7.4 — 15.7	-8.9 - 16.8	-7.8 - 15.5		
$b\bar{b}\gamma\gamma$	-8.1 — 13.1	-8.1 - 13.1	-7.9 - 12.9		
Combination	-5.0 - 12.0	-5.8 - 12.0	-5.3—11.5 ▶ ⊒ = ∽ <		

Combination of di-Higgs and single-Higgs analyses

- Analysis to constrain κ_{λ} using single-Higgs measurements with up to 80 fb⁻¹ also performed ATL-PHYS-PUB-2019-009 (see talk by Eleonora Rossi)
- Di-Higgs κ_λ analysis very recently combined with the single-Higgs κ_λ analysis, NEW RESULTS:

κ_{λ} -only model:

di-Higgs and single-Higgs combination allows:

- Significant improvement in constraining κ_{λ} : -2.3 < κ_{λ} < 10.3, assuming all other SM couplings
- Constraints on κ_λ set in a more generic model with less assumptions on the other Higgs couplings:

 $-3.7 < \kappa_{\lambda} < 11.5$, in the generic model

New! ATLAS-CONF-2019-049

Model	$\kappa_{W^{+1\sigma}_{-1\sigma}}$	$\kappa_{Z_{-1\sigma}^{+1\sigma}}$	$\kappa_{t}{}^{+1\sigma}_{-1\sigma}$	$\kappa_{b}{}^{+1\sigma}_{-1\sigma}$	$\kappa_{\ell}{}^{+1\sigma}_{-1\sigma}$	$\kappa_{\lambda^{+1\sigma}_{-1\sigma}}$	к _д [95% CL]	
Ka-only	1	1	1	1	1	$4.6^{+3.2}_{-3.8}$	[-2.3, 10.3]	obs.
k ₂ -omy	1	1	1	1	1	$1.0^{+7.3}_{-3.8}$	[-5.1, 11.2]	exp.
Generic	$1.03^{+0.08}_{-0.08}$	$1.10\substack{+0.09\\-0.09}$	$1.00^{+0.12}_{-0.11}$	$1.03^{+0.20}_{-0.18}$	$1.06\substack{+0.16\\-0.16}$	$5.5^{+3.5}_{-5.2}$	[-3.7, 11.5]	obs.
Generic	$1.00\substack{+0.08\\-0.08}$	$1.00\substack{+0.08\\-0.08}$	$1.00\substack{+0.12\\-0.12}$	$1.00\substack{+0.21\\-0.19}$	$1.00\substack{+0.16\\-0.15}$	$1.0^{+7.6}_{-4.5}$	[-6.2, 11.6]	exp.

Alessandra Betti

Prospects measurements at the HL-LHC

Prospect study for the search for di-Higgs production at the HL-LHC performed assuming 3000 ${\rm fb^{-1}}$ at 14 TeV,

using the combination of the 3 most sensitive channels: $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$, $b\bar{b}\gamma\gamma$

- $b\bar{b}b\bar{b}$ and $b\bar{b}\tau^+\tau^-$ analyses based on extrapolating the Run-2 analyses
- $b\bar{b}\gamma\gamma$ dedicated new analysis using simulations at 14 TeV

ATL-PHYS-PUB-2018-053, arXiv 1902.00134

Expected significance for $\kappa_{\lambda} = 1$: 3σ , evidence!

Channel	Statistical-only	Statistical + Systematic
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	0.61
$HH \rightarrow b\bar{b}\tau^+\tau^-$	2.5	2.1
$HH \rightarrow b\bar{b}\gamma\gamma$	2.1	2.0
Combined	3.5	3.0

4σ from ATLAS+CMS combination

Expected 40% precision on μ for $\kappa_{\lambda} = 1$

Channel	Measured μ (Statistical-only)	Measured μ (Statistical + Systematic)
$HH \rightarrow bbbb$	1.0 ± 0.6	1.0 ± 1.6
$HH \rightarrow b\bar{b}\tau^+\tau^-$	1.0 ± 0.4	1.0 ± 0.5
$HH \rightarrow b\bar{b}\gamma\gamma$	1.0 ± 0.6	1.0 ± 0.6
Combined	1.00 ± 0.31	1.0 ± 0.4

Expected $-0.4 < \kappa_\lambda < 7.3$ at 95% C.L. for $\kappa_\lambda = 1$

Scenario	1σ CI	2σ CI
Statistical uncertainties only	$0.4 \le \kappa_\lambda \le 1.7$	$-0.10 \le \kappa_\lambda \le 2.7 \cup 5.5 \le \kappa_\lambda \le 6.9$
Systematic uncertainties	$0.25 \le \kappa_\lambda \le 1.9$	$ \bullet \equiv \flat = 40 \exists 4 \leq \kappa_{\lambda} \leq 7.3 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Alessandra Betti

- Latest ATLAS results on di-Higgs production and the Higgs self-coupling
- Combination of 6 decay channels to set an upper limit on the di-Higgs production cross section: $6.9 \times \sigma_{roF}^{SM}$
- Combination of the 3 most sensitive channels to set constraints on the Higgs self-coupling modifier κ_{λ} : $-5 < \kappa_{\lambda} < 12$
- New results from the combination of di-Higgs and single-Higgs analyses to set constraints on κ_{λ} : -2.3 < κ_{λ} < 10.3
- Future prospects for the search for di-Higgs production and test κ_{λ} at the HL-LHC: possible to reach evidence for di-Higgs production at the end of the HL-LHC

ATLAS di-Higgs analyses with full Run-2 dataset ongoing!

Back-up slides

(日) (四) (로) (로) (로) (대) (이)

SM di-Higgs signal:

- Generated at NLO in QCD with MADGRAPH5_aMC@NLO
- Using the CT10 NLO PDF set
- Parton shower and hadronisation simulated with HERWIG++
- Using parameter values from the UE-EE-5-CTEQ6L1 tune
- FTApprox method used to include finite top-quark mass effects in the real-radiation NLO corrections, virtual loop corrections realised assuming infinite top-quark mass
- Generator level bin-by-bin reweighting of the m_{HH} distribution applied to take into account the finite top-quark mass effect in full NLO corrections

Signal normalised to $\sigma_{\sigma\sigma F}^{SM} = 33.5$ fb,

calculated at NLO in QCD with finite top-quark mass effects and corrected at NNLO in QCD matched with the NNLL resummation in the heavy top-quark limit

Signal simulation

di-Higgs signal with κ_{λ} variations:

 $b\bar{b}b\bar{b}$ and $b\bar{b}\tau^+\tau^-$:

- Generated at LO with MADGRAPH5_aMC@NLO
- Using the NNPDF 2.3 LO PDF set
- Showered using PYTHIA 8.2
- Using the A14 tune
- 3 LO samples generated with $\kappa_{\lambda}=$ 0, 1, 20
- $\bullet\,$ Used in linear combinations to obtain LO signal distributions for any κ_λ
- \bullet Weights derived in $m_{H\!H}$ bins from the ratio of any κ_λ to the SM and used to reweight the NLO SM sample
- $\bullet\,$ Reweighted NLO signal samples used to compute signal acceptance and distributions for any κ_λ

$b\bar{b}\gamma\gamma$:

- Shape of $m_{\gamma\gamma}$ described by the double-sided Crystal Ball function (Gaussian core with power-law tails)
- Signal acceptance parameterised from MC simulated samples

Normalisation for any κ_{λ} obtained by multiplying the SM cross section by the ratio $\sigma_{ggF}(\kappa_{\lambda})/\sigma_{ggF}^{SM}$ computed at NNLO+NNLL in the heavy top-quark approximation

Combination of di-Higgs and single-Higgs analyses: single-Higgs κ_λ analysis theoretical framework

Single-Higgs processes do not depend on κ_{λ} at LO, but the Higgs trilinear self-coupling enters in the NLO electroweak corrections via Higgs self energy loop corrections and additional diagrams

 \rightarrow an indirect constraint on κ_{λ} can be set comparing precise measurements of single-Higgs production yields to the SM predictions with κ_{λ} -dependent NLO EW effects

Theoretical framework for a global fit to constrain the Higgs trilinear coupling from single-Higgs measurements proposed in papers from F.Maltoni et al.

(https://arxiv.org/pdf/1607.04251.pdf, https://arxiv.org/pdf/1607.04251.pdf)

Single-Higgs κ_{λ} analysis based on this framework

3 × 3 × 0 0

Combination of di-Higgs and single-Higgs analyses: single-Higgs κ_λ analysis theoretical framework

Higgs production cross sections and decay BRs modified by parameters representing their ratio to the SM values as a function of κ_λ

For a given production process i the cross section modifier as a function of κ_{λ} can be written as:

$$\mu_i(\kappa_{\lambda},\kappa_i) = \frac{\sigma^{\text{BSM}}}{\sigma^{\text{SM}}} = Z_H^{\text{BSM}}(\kappa_{\lambda}) \left[\kappa_i^2 + \frac{(\kappa_{\lambda} - 1)C_1^i}{K_{\text{EW}}^i} \right]$$

where $Z_{H}^{\text{BSM}}(\kappa_{\lambda})$ is defined as:

$$Z_H^{\text{BSM}}(\kappa_{\lambda}) = \frac{1}{1 - (\kappa_{\lambda}^2 - 1)\delta Z_H} \quad \text{with} \quad \delta Z_H = -1.536 \times 10^{-3},$$

For a given decay channel f the BR modifier as a function of κ_{λ} can be written as:

$$\mu_f(\kappa_{\lambda},\kappa_f) = \frac{\mathbf{B}\mathbf{R}_f^{\mathrm{BSM}}}{\mathbf{B}\mathbf{R}_f^{SM}} = \frac{\kappa_f^2 + (\kappa_{\lambda} - 1)C_1^f}{\sum_j \mathbf{B}\mathbf{R}_j^{\mathrm{SM}} \left[\kappa_j^2 + (\kappa_{\lambda} - 1)C_1^j\right]}.$$

• $\kappa_{EW}^i = \frac{\sigma_{NLO}^{SM,i}}{\sigma_{LO}^{SM,i}}$ accounts for the NLO EW corrections to the cross section for $\kappa_{\lambda} = 1$

• C_1^i is a process- and kinematic-dependent coefficient

• $\kappa_i = \frac{\sigma_{LO,i}^{BSM}}{\sigma_{LO}^{SM,i}}$ represent the modifiers to other Higgs boson couplings that can also be considered $\langle \Box \rangle + \langle \overline{\mathcal{O}} \rangle + \langle \overline{\mathcal$

Double-Higgs and single-Higgs cross sections and Higgs decay branching fractions as a function of κ_λ

◆□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □▶</p>

Combination of di-Higgs and single-Higgs analyses: data and input measurements

Analysis	Integrated luminosity (fb ⁻¹)
$H \rightarrow \gamma \gamma$ (excluding $t\bar{t}H, H \rightarrow \gamma \gamma$)	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell \text{)}$	79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
$H ightarrow au^+ au^-$	36.1
$VH, H \rightarrow b\bar{b}$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$	36.1
$t\bar{t}H, H \rightarrow $ multilepton	36.1
$HH \rightarrow b\bar{b}b\bar{b}$	27.5
$HH ightarrow b ar{b} au^+ au^-$	36.1
$HH \rightarrow b\bar{b}\gamma\gamma$	36.1

Same input analyses used in the HH combination and in the H combination, except the $ttH, H \rightarrow \gamma\gamma$ analysis that has been removed from this combination because of large overlap in the events between the $ttH, H \rightarrow \gamma\gamma$ and $HH \rightarrow bb\gamma\gamma$ analyses (50%)

- Removing $ttH, H \rightarrow \gamma \gamma$ worsens the expected constraint on κ_{λ} by 4%, removing $HH \rightarrow bb\gamma\gamma$ instead would worsen it by 15%
- The remaining categories have a maximum overlap of less than 2% of the events in the double-Higgs categories and the impact of the overlapping categories on the final result is of about 1% so they are kept

• For the κ_{λ} -only model where all couplings are set to SM values except κ_{λ}

Likelihood scan as a function of κ_{λ}

New! ATLAS-CONF-2019-049

Combination of di-Higgs and single-Higgs analyses: results

 $\bullet\,$ For more generic models: model where all coupling modifiers are set to the SM values except κ_λ and κ_t

• For more generic models: model where $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_l$ and κ_λ are fitted simultaneously

Likelihood scan as a function of κ_{λ} with $\kappa_{W}, \kappa_{Z}, \kappa_{t}, \kappa_{b}, \kappa_{l}$ profiled, compared to the likelihood scan from the κ_{λ} -only fit

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Likelihood split per production mode and decay mode

Back-up slides

Prospects measurements at the HL-LHC: extrapolation method

 $b\bar{b}b\bar{b}$ and $b\bar{b}\tau^+\tau^-$ analyses based on extrapolating the Run-2 analyses:

- Scaling of the distributions used in the fit of the published analyses
- \bullet Signal normalisation scaled to account the increase of collision energy from 13 TeV to 14 TeV (using recommendations from the LHCXSWG)
- Background normalisations corrected to account the increase of collision energy from 13 TeV to 14 TeV (scaling the normalisation by 1.18 accounting for the change in gluon-luminosity)
- Experimental systematic uncertainties kept constant with their Run-2 values
- Statistical uncertainties on data-driven backgrounds scaled following Poisson statistics corresponding to the target dataset size
- MC statistical uncertainties neglected

ATL-PHYS-PUB-2018-053, arXiv 1902.00134

12 / 15

 $b\bar{b}\gamma\gamma$ dedicated new analysis using simulations at 14 TeV:

- Truth-level simulations with smearing applied to emulate the upgraded ATLAS detector response
- Systematic uncertainties kept constant with their Run-2 values
- Signal region defined applying a cut on the output of a BDT and $123 < m_{\gamma\gamma} < 127$ GeV
- Final disciminant: m_{HH} distribution

ATL-PHYS-PUB-2018-053, arXiv 1902.00134

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Prospects measurements at the HL-LHC: ATLAS and CMS combination

	Statistical-only		Statistical + Systematic	
	ATLAS	CMS	ATLAS	CMS
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95
$HH \rightarrow b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4
$HH \rightarrow b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8
$HH \rightarrow b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56
$HH \rightarrow b\bar{b}ZZ(4l)$	-	0.37	-	0.37
combined	3.5	2.8	3.0	2.6
	Combined 4.5		Combined	
			4.0	

- Expected 4σ for $\kappa_{\lambda} = 1$
- Expected allowed 0.1 $<\kappa_\lambda<$ 2.3 at 95% C.L.

arXiv 1902.00134

(ロ) (四) (三) (三) (三) (三) (○)

Prospects measurements at the HL-LHC: double-Higgs ans single-Higgs combination

- κ_{λ} -only fit and global fit possible in single-Higgs
- Double-Higgs is driving the bound, but single-Higgs data allow to perform a global fit and to remove the degenerate minima around $\kappa_\lambda=5$