

Philipp Windischhofer, Miha Zgubič, Daniela Bortoletto

philipp.windischhofer@physics.ox.ac.uk

University of Oxford

Higgs Couplings October 1st, 2019 Oxford, United Kingdom

Signal (S) / background (B) discrimination

• $m_{bb}(\mathbf{e})$ and $L(\mathbf{e})$ strongly correlated \rightarrow distortion

• $m_{bb}(\mathbf{e})$ and $L(\mathbf{e})$ strongly correlated \rightarrow distortion

• No discrimination power left in $m_{bb} \rightarrow physically important$

• No discrimination power left in $m_{bb} \rightarrow physically important$

• No discrimination power left in $m_{bb} \rightarrow physically important$

• $m_{bb}(\mathbf{e})$ vs. NN(\mathbf{e}) \leftrightarrow physics vs. statistics

• $m_{bb}(\mathbf{e})$ vs. NN(\mathbf{e}) \leftrightarrow physics vs. statistics

 \tilde{L} ... best discriminant that limits distortion of m_{bb}

 \tilde{L} ... best discriminant that limits distortion of m_{bb}

$$\frac{p_S(\mathbf{e})}{p_B(\mathbf{e})} =: L(\mathbf{e})$$

$$L(\mathbf{e}) := \arg \max_{f} \left(\begin{array}{c} \mathscr{P}[f] \end{array} \right)$$

$$candidate$$

$$candidate$$

$$discriminant$$

$$measure$$

$$L(\mathbf{e}) := \arg\max_{f} \left(\mathscr{P}[f] \right)$$

$$L(\mathbf{e}) := \arg\max_{f} \left(\mathscr{P}[f] \right)$$

 \tilde{L} : control distortion of m_{bb} by event selection

$$L(\mathbf{e}) := \arg\max_{f} \left(\mathscr{P}[f] \right)$$

limit correlation of m_{bb} and \tilde{L}

$$L(\mathbf{e}) := \arg\max_{f} \left(\mathscr{P}[f] \right)$$

$$L(\mathbf{e}) := \arg\max_{f} \left(\mathscr{P}[f] \right)$$

$$\tilde{L}(\mathbf{e}) := \arg\max_{f} \left(\mathscr{P}[f] \right)$$

$$\tilde{L}(\mathbf{e}) := \arg \max_{f} (\mathscr{P}[f])$$

$$\tilde{L}(\mathbf{e}) := \arg \max_{f} \left(\mathscr{P}[f] + C(f, m_{bb}) \right)$$

 $\tilde{L}(\mathbf{e}) := \arg \max_{f} (\mathscr{P}[f])$ + $C(f, m_{bb})$)

constraint

$$\tilde{L}(\mathbf{e}) := \arg \max_{f} \left(\begin{array}{c} \mathscr{P}[f] \\ +\lambda \cdot & C(f, m_{bb}) \end{array} \right)$$
Lagrange multiplier (constraint strength) constraint

Constraint:

limit correlation of m_{bb} and \tilde{L}

Constraint:

limit correlation of m_{bb} and \tilde{L}

 \rightarrow ()
$$\tilde{L}(\mathbf{e}) := \arg \max_{f} \left(\begin{array}{c} \mathscr{P}[f] \\ -\lambda \cdot \rho(f, m_{bb}) \end{array} \right)$$
Lagrange multiplier
(constraint strength) Pearson correlation $\rightarrow 0$
 $\Longrightarrow \tilde{L}, m_{bb}$ linearly
uncorrelated
 m_{bb} and \tilde{L}

$$\begin{split} \tilde{L}(\mathbf{e}) &:= \arg \max_{f} \left(\begin{array}{c} \mathscr{P}[f] \\ & -\lambda \cdot \ \rho\left(f, m_{bb}\right) \end{array} \right) \\ & \mathsf{Lagrange\ multiplier} \\ & (constraint\ strength) \\ \\ \mathbf{Constraint:} \\ \text{limit\ correlation\ of} \\ & m_{bb}\ \text{and}\ \tilde{L} \\ \end{split}$$

Constraint:

limit correlation of m_{bb} and \tilde{L}

 \rightarrow ()

*<u>http://cern.ch/go/zKv8</u>

$$\begin{split} \tilde{L}(\mathbf{e}) &:= \arg \max_{f} \left(\begin{array}{c} \mathscr{P}[f] \\ & -\lambda \cdot \operatorname{MI}(f, m_{bb}) \end{array} \right) \\ & \texttt{Lagrange multiplier} & \texttt{(} \\ & \texttt{(constraint strength)} \end{array} \end{split}$$

Constraint:

limit correlation of m_{bb} and \tilde{L}

* http://cern.ch/go/zKv8

* http://cern.ch/go/zKv8

$$\begin{split} \tilde{L}(\mathbf{e}) &:= \arg \max_{f} \left(\begin{array}{c} \mathscr{P}[f] \\ & -\lambda \cdot \operatorname{MI}(f, m_{bb}) \end{array} \right) \\ & \textup{Lagrange multiplier} \\ & \textup{(constraint strength)} \end{array} \quad \begin{pmatrix} \\ & \operatorname{Mutual information}^{*} \to 0 \\ & \longrightarrow p(\tilde{L}, m_{bb}) = p(\tilde{L}) \cdot p(m_{bb}) \\ & \longrightarrow p(\tilde{L}, m_{bb}) = n(\tilde{L}) \cdot p(m_{bb}) \end{split}$$

* http://cern.ch/go/zKv8

$$\begin{split} \tilde{L}(\mathbf{e}) &:= \arg \max_{f} \left(\begin{array}{c} \mathscr{P}[f] \\ & -\lambda \cdot \operatorname{MI}(f, m_{bb}) \end{array} \right) \\ & \swarrow \\ \text{Lagrange multiplier} \\ (constraint strength) \\ \hline \\ \mathbf{Constraint:} \\ \text{limit correlation of} \\ m_{bb} \text{ and } \tilde{L} \\ \end{split}$$

The final discriminant

$$\tilde{L}(\mathbf{e}) := \arg \max_{f} \left(\mathscr{P}[f] - \lambda \cdot \mathrm{MI}(f, m_{bb}) \right)$$

$$\tilde{L}(\mathbf{e}) := \arg \max_{f} \left(\mathscr{P}[f] - \lambda \cdot \mathrm{MI}(f, m_{bb}) \right)$$

candidate discriminant: **neural network** $\tilde{L}(\mathbf{e}) := \arg \max_{f} \left(\mathscr{P}[f] - \lambda \cdot \mathrm{MI}(f, m_{bb}) \right)$

Evaluation: toy analysis, VH/bb

Evaluation: toy analysis, VH/bb

Evaluation: toy analysis, VH/bb, 0-lepton channel

VH $\downarrow \downarrow b\bar{b}$ $\downarrow Z \to \nu\bar{\nu}, W \to \ell\nu$

Evaluation: toy analysis, VH/bb, 0-lepton channel

$$VH \downarrow \downarrow b\bar{b} \downarrow Z \to \nu\bar{\nu}, W \to \ell\nu$$

Setup:

Backgrounds:

- W+jets, Z+jets
- ttbar
- di-boson (ZZ, WZ)

Simulation: MadGraph (LO) + Pythia8 + Delphes

Evaluation: toy analysis, VH/bb, 0-lepton channel

$$VH \downarrow \downarrow b\bar{b} \downarrow Z \to \nu\bar{\nu}, W \to \ell\nu$$

Setup:

Backgrounds:

- W+jets, Z+jets
- ttbar
- di-boson (ZZ, WZ)

Simulation: MadGraph (LO) + Pythia8 + Delphes

Event selection: 2 or 3 jets, 2 b-tags, MET, no leptons

Evaluation: toy analysis, VH/bb, 0-lepton channel

VH $\downarrow \downarrow b\bar{b}$ $\downarrow Z \to \nu\bar{\nu}, W \to \ell\nu$

Evaluation: toy analysis, VH/bb, 0-lepton channel

$$VH \downarrow \downarrow b\bar{b} \downarrow Z \to \nu\bar{\nu}, W \to \ell\nu$$

Signal regions:

2-jet 3-jet

${ ilde L}$ "tight"	SR 1 m _{bb}	SR 3 m _{bb}
\tilde{L} "loose"	SR 2 <i>m_{bb}</i>	SR 4 m _{bb}

Evaluation: toy analysis, VH/bb, 0-lepton channel

$$VH \downarrow \downarrow b\bar{b} \downarrow Z \to \nu\bar{\nu}, W \to \ell\nu$$

Signal regions:

 $\begin{array}{c|c} 2 \text{-jet} & 3 \text{-jet} \\ \tilde{L} \text{ "tight"} & \mathbf{SR 1} & \mathbf{SR 3} \\ m_{bb} & m_{bb} & m_{bb} \\ \tilde{L} \text{ "loose"} & \mathbf{SR 2} & \mathbf{SR 4} \\ m_{bb} & m_{bb} & m_{bb} \end{array}$

Figure of merit: Asimov fit, signal and all backgrounds floating

Evaluation: toy analysis, VH/bb, 0-lepton channel

$$VH \downarrow \downarrow b\bar{b} \downarrow Z \to \nu\bar{\nu}, W \to \ell\nu$$

Signal regions:

 $\begin{array}{c|c} 2 \text{-jet} & 3 \text{-jet} \\ \hline {L} `` tight'' & \begin{array}{c} \mathbf{SR 1} & \mathbf{SR 3} \\ m_{bb} & m_{bb} \end{array} \\ \hline {L} `` loose'' & \begin{array}{c} \mathbf{SR 2} & m_{bb} \\ m_{bb} & m_{bb} \end{array} \end{array}$

Figure of merit: Asimov fit, signal and all backgrounds floating

$\tilde{L}(\mathbf{e}) = \arg\max_{f} \left(\mathscr{P}[f] - \lambda \cdot \mathrm{MI}(f, m_{bb}) \right)$

$$\lambda = 0 \qquad \qquad \lambda \gg 0$$

Philipp Windischhofer

- Event selections distort distributions
 - Physical observables lose interpretation

- Event selections *distort* distributions
 - Physical observables lose interpretation
- Construct discriminants that obey auxiliary constraints
 - Require independence \leftrightarrow preserve shapes

- Event selections *distort* distributions
 - Physical observables lose interpretation
- Construct discriminants that obey auxiliary constraints
 - Require independence \leftrightarrow preserve shapes
- Ready to be used in practice

- Event selections *distort* distributions
 - Physical observables lose interpretation
- Construct discriminants that obey auxiliary constraints
 - Require independence \leftrightarrow preserve shapes
- Ready to be used in practice

More information: arXiv:1907.02098

Cut-based analysis

Signal regions: (inspired by a published ATLAS analysis)

"Pivotal classifier" analysis

Signal regions:

• Cuts on \tilde{L} designed to achieve the same signal efficiency in each region
Mutual Information

$\begin{array}{c} f, m_{bb} \\ \text{independent} \end{array}$

 $f, m_{bb} \\ \mbox{linearly uncorrelated} \\$

Mutual Information MI = 0

 \downarrow

no nonlinear relationship

Pearson correlation

 $\rho = 0$ \Downarrow

no linear relationship

Mutual Information

Two random variables:

X Y

Objects that characterise them:

$$p_X(x)$$
 $p_Y(y)$
 $p_{(X,Y)}(x,y)$... joint probability distribution

Mutual Information:

$$MI(X, Y) = D_{KL}\left(p_{(X,Y)} | | p_X \cdot p_Y\right)$$

Kullback-Leibler divergence
 "distance" between densities

Mutual Information

Kullback-Leibler divergence:

$$D_{\mathrm{KL}}(P \mid \mid Q) = \int \mathrm{d}x \, p(x) \, \log\left(\frac{p(x)}{q(x)}\right)$$

"Distance" between probability distributions p and q.

Mutual information:

$$MI(X, Y) = D_{KL}\left(p_{(X,Y)} | | p_X p_Y\right)$$

"Distance" between joint PDF and product of marginal PDFs.

$$MI(X, Y) = \int dx \, dy \, p_{(X,Y)}(x, y) \, \log\left(\frac{p_{(X,Y)}(x, y)}{p_X(x) \, p_Y(y)}\right)$$

How to compute Mutual Information?

MI can recognise arbitrary complicated dependencies between random variables...

$$\operatorname{MI}(X,Y) = \int \mathrm{d}x \, \mathrm{d}y \, p_{(X,Y)}(x,y) \, \log\left(\frac{p_{(X,Y)}(x,y)}{p_X(x) \, p_Y(y)}\right)$$

... but requires knowledge about distributions.

MI also admits a functional definition:

$$MI(X, Y) = \sup_{T \in \mathscr{F}} \langle T \rangle_{p(X,Y)} - \langle e^{T-1} \rangle_{p(X)p(Y)}$$

How to compute Mutual Information?

$$\tilde{L}(\mathbf{e}) := \arg \max_{f} \left(\begin{array}{c} \mathcal{P}[f] \\ \hline -\lambda \cdot \operatorname{MI}(f, m_{bb}) \end{array} \right)$$

$$\left(\begin{array}{c} \operatorname{loss \ function} \\ \operatorname{must \ be \ differentiable \ w.r.t. \ f} \end{array} \right)$$

$$\operatorname{MI}(X, Y) = \sup_{T \in \mathscr{F}} \left(\langle T \rangle_{p(X,Y)} - \langle e^{T-1} \rangle_{p(X)p(Y)} \right)$$

$$\operatorname{adversarial \ neural \ neu$$

Into practice

 $\tilde{L}(\mathbf{e}) = \arg\max_{f} \left(\mathscr{P}[f] - \lambda \cdot \mathrm{MI}(f, m_{bb}) \right)$

Philipp Windischhofer

More performance plots

Comparison: cut-based vs. pivotal classifier, mass shapes

More performance plots

Comparison: cut-based vs. pivotal classifier, significances

Philipp Windischhofer