The inclusive Higgs width in the SMEFT

Ilaria Brivio

Institut für Theoretische Physik, Universität Heidelberg

based on 1906.06949 in collaboration with T. Corbett and M. Trott

The SMEFT

SMEFT = Effective Field Theory with **SM fields + symmetries**

a Taylor expansion in canonical dimensions ($v, E/\Lambda$):

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_{5} + \frac{1}{\Lambda^{2}} \mathcal{L}_{6} + \frac{1}{\Lambda^{3}} \mathcal{L}_{7} + \frac{1}{\Lambda^{4}} \mathcal{L}_{8} + \dots$$

$$\mathcal{L}_{n} = \sum_{i} C_{i} \mathcal{O}_{i}^{d=n} \qquad C_{i} \text{ free parameters (Wilson coefficients)}$$

 \mathcal{O}_i invariant operators that form a complete basis

describes impact of any UV \rightarrow nearly decoupled: $\Lambda \gg v, E$

• converges to SM in the limit $E \ll \Lambda$

 \square not just a parameterization but a consistent QFT \rightarrow loops, RGE etc.

Ilaria Brivio (ITP Heidelberg)

An important observable: the Higgs width

a crucial observable for the Higgs sector

SM:
$$\Gamma_H \simeq 4 \text{ MeV} \rightarrow \frac{\Gamma_H}{m_H} \simeq 3 \cdot 10^{-5} \ll 1$$

 \Rightarrow Higgs measurements can be factored into

$$\sigma(i \to H) \times Br(H \to f)$$

An important observable: the Higgs width

a crucial observable for the Higgs sector

SM:
$$\Gamma_H \simeq 4 \text{ MeV} \rightarrow \frac{\Gamma_H}{m_H} \simeq 3 \cdot 10^{-5} \ll 1$$

 \Rightarrow Higgs measurements can be factored into

$$\sigma(i \to H) \times Br(H \to f)$$

SMEFT: probe separately production and decay (

$$Br(H \to f) = \frac{\Gamma(H \to f)}{\Gamma_H^{\text{tot}}}$$

Ilaria Brivio (ITP Heidelberg)

An important observable: the Higgs width

a crucial observable for the Higgs sector

SM:
$$\Gamma_H \simeq 4 \text{ MeV} \rightarrow \frac{\Gamma_H}{m_H} \simeq 3 \cdot 10^{-5} \ll 1$$

 \Rightarrow Higgs measurements can be factored into

$$\sigma(i \to H) \times Br(H \to f)$$

SMEFT: probe separately production and decay

$$Br_{\rm SMEFT}(H \to f) = \left[\frac{\Gamma(H \to f)}{\Gamma_{H}^{\rm tot}}\right]_{\rm SM} \left[1 + \frac{\delta\Gamma(H \to f)}{\Gamma_{\rm SM}(H \to f)} - \frac{\delta\Gamma_{H}^{\rm tot}}{\Gamma_{H,\rm SM}^{\rm tot}}\right]$$

▶ both $\delta\Gamma(H \to f)$ and $\delta\Gamma_H^{\text{tot}}$ need to be determined

• $\delta \Gamma_H^{\text{tot}}$ enters all processes \rightarrow **strong impact** on global SMEFT analyses!

Ilaria Brivio (ITP Heidelberg)

The Higgs width in the SMEFT - setup

Focus on the leading contributions:

• LO in the EFT: up to SM - \mathcal{L}_6 interference.

$$\Gamma_{H} = \Gamma_{H,SM} \left[1 + \frac{\delta \Gamma_{H}}{\Gamma_{H,SM}} \right] \qquad \qquad \frac{\delta \Gamma_{H}}{\Gamma_{H,SM}} = \sum_{i} a_{i} \bar{C}_{i} = \sum_{i} a_{i} \left(C_{i} \frac{v^{2}}{\Lambda^{2}} \right)$$

tree level.

SM couplings $H\gamma\gamma$, $HZ\gamma$, Hgg included as effective vertices for $H \rightarrow f\bar{f}\gamma / \gamma\gamma / gg$. Neglected in other channels.

up to 4-body decays.

The Higgs width in the SMEFT - setup

Focus on the leading contributions:

• LO in the EFT: up to SM - \mathcal{L}_6 interference.

$$\Gamma_{H} = \Gamma_{H,SM} \left[1 + \frac{\delta \Gamma_{H}}{\Gamma_{H,SM}} \right] \qquad \qquad \frac{\delta \Gamma_{H}}{\Gamma_{H,SM}} = \sum_{i} a_{i} \bar{C}_{i} = \sum_{i} a_{i} \left(C_{i} \frac{v^{2}}{\Lambda^{2}} \right)$$

tree level.

SM couplings $H\gamma\gamma$, $HZ\gamma$, Hgg included as effective vertices for $H \rightarrow f\bar{f}\gamma / \gamma\gamma / gg$. Neglected in other channels.

up to 4-body decays.

Conventions and assumptions:

Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

- $U(3)^5$ flavor symmetry $\rightarrow g_{Hff} \sim y_f$ also in the SMEFT
- **inclusive** calculation, not differential \rightarrow CP odd terms do not contribute
- ▶ 2 input schemes: $\{m_W, m_Z, G_F\}$, $\{\alpha_{em}, m_Z, G_F\}$ → backup

Ilaria Brivio (ITP Heidelberg)

leading channels:

 $\begin{array}{l} H \rightarrow \bar{f}f \\ H \rightarrow gg \\ H \rightarrow \gamma\gamma \\ H \rightarrow \bar{f}f\gamma \\ H \rightarrow 4f \end{array}$

- 4 $f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

Ilaria Brivio (ITP Heidelberg)

leading channels:

 $H \rightarrow \overline{f}f$ $H \rightarrow gg$ $H \rightarrow \gamma\gamma$ $H \rightarrow \overline{f}f\gamma$ $H \rightarrow 4f$

$$\frac{\Gamma(H \to \bar{f}f)}{\Gamma_{SM}(H \to \bar{f}f)} \simeq 1 + 2\delta g_{Hff}$$

$$\delta g_{Hff} = \bar{C}_{H_0} - \frac{\bar{C}_{HD}}{4} - \bar{C}_{HI}^{(3)} + \frac{\bar{C}_{II}}{2} - \frac{5}{2}\bar{C}_{fH}$$

Alonso, Jenkins, Manohar, Trott 1312.2014

- renorm. of the H field
- contrib. to μ decay $\rightarrow G_F \rightarrow v$
- ► direct \mathcal{O}_{fH} contribution $\left(-\frac{3}{2}\bar{C}_{fH}\right)$ + contrib. to $m_f \rightarrow y_f$ $\left(-\bar{C}_{fH}\right)$
- $4f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

Ilaria Brivio (ITP Heidelberg)

leading channels:

 $H \rightarrow \bar{f}f$ $H \rightarrow gg$ $H \rightarrow \gamma\gamma$ $H \rightarrow \bar{f}f\gamma$ $H \rightarrow 4f$

$$rac{\Gamma(h
ightarrow gg)}{\Gamma^{SM}(h
ightarrow gg)} \simeq 1 + rac{16\pi^2}{g_s^2 I_g} ar{C}_{HG}, \qquad I^g \simeq 0.375$$
Manohar,Wise 0601212

- 4 $f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

Ilaria Brivio (ITP Heidelberg)

leading channels:

$$H \rightarrow \bar{f}f$$
$$H \rightarrow gg$$
$$H \rightarrow \gamma\gamma$$
$$H \rightarrow \bar{f}f\gamma$$
$$H \rightarrow 4f$$

Bergström,Hulth Nucl.Phys.B259(1985)137 Manohar,Wise 0601212

- 4 $f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

leading channels:

$$H \rightarrow \overline{f}f$$

$$\longrightarrow H \rightarrow gg$$

$$\longrightarrow H \rightarrow \gamma\gamma$$

$$\longrightarrow H \rightarrow \overline{f}f\gamma$$

$$H \rightarrow 4f$$

$$\frac{\Gamma(h \to \gamma \gamma)}{\Gamma^{SM}(h \to \gamma \gamma)} \simeq 1 \underbrace{16\pi^2}_{e^2 I^{\gamma}} \gamma \gamma, \qquad I^{\gamma} \simeq -1.65$$
$$\mathscr{C}_{\gamma\gamma} = s_{\theta}^2 \bar{C}_{HW} + c_{\theta}^2 \bar{C}_{HB} - s_{\theta} c_{\theta} \bar{C}_{HWB}$$
Bereström, Hulth Nucl. Phys. B259(1985)137

Bergström,Hulth Nucl.Phys.B259(1985)137 Manohar,Wise 0601212

loop-factor enhancement

in the relative correction:

tree-level SMEFT vs loop SM

- 4 $f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

Ilaria Brivio (ITP Heidelberg)

leading channels:

$$H \rightarrow \overline{f}f$$

$$H \rightarrow gg$$

$$H \rightarrow \gamma\gamma$$

$$H \rightarrow \overline{f}f\gamma$$

$$H \rightarrow 4f$$

available as $H \rightarrow ZZ^*$, $H \rightarrow WW^* \times Br(Z, W)$ relying on narrow width approx. for Z, W.

good in SM but not sufficient in the SMEFT!

<u>main reason</u>: tree $\gamma\gamma$, $Z\gamma$ mediated diagrams

also missing:

- CC NC interference
- crossed-current interference in ZZ diagrams
- $\delta \Gamma_V$, δm_V^2 corrections for off-shell boson

- 4 $f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

leading channels:

 $H \rightarrow \bar{f}f$ $H \rightarrow gg$ $H \rightarrow \gamma\gamma$ $H \rightarrow \bar{f}f\gamma$ $H \rightarrow 4f$

available as $H \rightarrow ZZ^*$, $H \rightarrow WW^* \times Br(Z, W)$ relying on narrow width approx. for Z, W.

good in SM but not sufficient in the SMEFT!

<u>main reason</u>: tree $\gamma\gamma$, $Z\gamma$ mediated diagrams

also missing:

- CC NC interference
- crossed-current interference in ZZ diagrams
- $\delta \Gamma_V$, δm_V^2 corrections for off-shell boson

- 4 $f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

$H \rightarrow 4f$ in the SMEFT

(1) corrections to SM diagrams

 $\propto g_{\mu\nu}$ (SM-like) $\propto g_{\mu\nu} p \cdot q - p_{\nu} q_{\mu} (Z_{\mu\nu} Z^{\mu\nu} h)$ $\delta g_L, \delta g_R$

 $-im_Z\delta\Gamma_Z + (2m_Z - i\Gamma_Z)\delta m_Z$ $p^2 - m_z^2 + i\Gamma_Z m_Z$

> hard to extract from MC simulation! full treatment requires analytic calculation

$H \rightarrow 4f$ in the SMEFT

1 corrections to SM diagrams

 $\begin{array}{l} \propto g_{\mu\nu} \; (\text{SM-like}) \\ \propto g_{\mu\nu} p \cdot q - p_{\nu} q_{\mu} \left(Z_{\mu\nu} Z^{\mu\nu} h \right) \end{array}$

 $\delta g_L, \delta g_R$

 $\frac{-im_Z\delta\Gamma_Z + (2m_Z - i\Gamma_Z)\delta m_Z}{p^2 - m_Z^2 + i\Gamma_Z m_Z}$

2 genuine SMEFT diagrams

$H \rightarrow 4f$ in the SMEFT - complexity

$$h \rightarrow e^+ e^- e^+ e^-$$

SM

interfering with

Ilaria Brivio (ITP Heidelberg)

$H \rightarrow 4f$ in the SMEFT - complexity

 $h\to \bar u\, u\, \bar d\, d$

SM

interfering with

$H \rightarrow 4f$ - analytic calculation

fully analytical treatment. automated with general decomposition:

$$\mathcal{A}_{V_{1}} \qquad i \qquad \mathcal{A}^{\dagger}_{J} \sim g_{HV_{1}V_{2}} g_{HV_{3}V_{4}} \sum_{l} \mathcal{T}^{(n)}_{J} \qquad \mathcal{A}^{\dagger}_{L,R} \sim g_{HV_{1}V_{2}} g_{HV_{3}V_{4}} \sum_{n} \mathcal{T}^{(n)}_{J} \qquad \mathcal{T}^{(n)}_{J} \qquad \mathcal{L}^{(n)}_{L,R} = \mathcal{K}^{(n)} \left(g_{L,R}^{ij,V_{1}}, g_{L,R}^{ij,V_{3}}, g_{L,R}^{kl,V_{2}}, g_{L,R}^{kl,V_{4}} \right) \qquad \mathcal{F}^{(n)}_{V_{1}V_{2}V_{3}V_{4}} \left(p_{a}, m_{a} \right), \quad a = \{i, j, k, l\}$$

for $m_a \equiv 0$ there are only **8** independent $\mathcal{F}_{V_1 V_2 V_3 V_4}$. For each $\{V\}$ set:

- numerical integration of phase space: Vegas in Mathematica T. Hahn 0404043
- cross-check: RAMBO + 2 independent parameterizations of phase space

Kleiss, Stirling, Ellis Comput. Phys. Commun. 40(1986) 359

Ilaria Brivio (ITP Heidelberg)

$H \rightarrow 4f$ - results

Example:
$$H \to e^+ e^- \mu^+ \mu^ m_f \equiv 0, m_W$$
 scheme
$$\frac{\delta \Gamma(H \to e^+ e^- \mu^+ \mu^-)}{\Gamma_{\rm SM}(H \to e^+ e^- \mu^+ \mu^-)} = \sum_i a_i \bar{C}_i = \sum_i a_i \left(C_i \frac{v^2}{\Lambda^2} \right)$$

	\bar{C}_{HW}	\bar{C}_{HB}	\bar{C}_{HWB}	$\bar{C}_{H^{\Box}}$	\bar{C}_{HD}	$ar{C}_{HI}^{(1)}$	$ar{C}_{HI}^{(3)}$	\bar{C}_{He}	$ar{C}_{Hq}^{(1)}$	$ar{C}_{Hq}^{(3)}$	Ē _{Hu}	\bar{C}_{Hd}	$\bar{C}'_{\prime\prime}$
Z	-0.78	-0.22	0.30	2	0.17	4.38	-1.62	-3.52					3.
А	1.04	-1.08	-0.68										
Е						-2.23	-2.23	1.80					
G			-0.38		0.06	0.15	1.14	0.15	-0.39	-1.34	-0.20	0.15	-0.83
tot	0.26	-1.30	-0.76	2.	0.23	2.30	-2.71	-1.58	-0.39	-1.34	-0.20	0.15	2.17

$$\begin{array}{c} \mathsf{Z} & \text{corrections to SM diagram} \\ \mathsf{A} & \gamma \text{ diagrams} \\ \mathsf{E} & \text{contact diagrams } (HZee) \\ \mathsf{G} & \delta \Gamma_Z^{\mathrm{tot}}/\Gamma_{Z,SM} \text{ on } + \text{off-shell } Z \end{array}$$

Ilaria Brivio (ITP Heidelberg)

$H \rightarrow 4f$ - results

Example:
$$H \to e^+ e^- \mu^+ \mu^ m_f \equiv 0, m_W$$
 scheme
$$\frac{\delta \Gamma(H \to e^+ e^- \mu^+ \mu^-)}{\Gamma_{\rm SM}(H \to e^+ e^- \mu^+ \mu^-)} = \sum_i a_i \bar{C}_i = \sum_i a_i \left(C_i \frac{v^2}{\Lambda^2} \right)$$

	\bar{C}_{HW}	\bar{C}_{HB}	\bar{C}_{HWB}	$\bar{C}_{H^{\Box}}$	\bar{C}_{HD}	$ar{C}_{HI}^{(1)}$	$ar{C}_{HI}^{(3)}$	Ēне	$ar{C}_{Hq}^{(1)}$	$ar{C}_{Hq}^{(3)}$	Ē _{Hu}	\bar{C}_{Hd}	$\bar{C}'_{\prime\prime}$
Z	-0.78	-0.22	0.30	2	0.17	4.38	-1.62	-3.52					3.
А	1.04	-1.08	-0.68										
Е						-2.23	-2.23	1.80					
G			-0.38		0.06	0.15	1.14	0.15	-0.39	-1.34	-0.20	0.15	-0.83
tot	0.26	-1.30	-0.76	2.	0.23	2.30	-2.71	-1.58	-0.39	-1.34	-0.20	0.15	2.17

$$\begin{array}{c|c} \mathsf{Z} & \text{corrections to SM diagram} \\ \mathsf{A} & \gamma \text{ diagrams} \\ \mathsf{E} & \text{contact diagrams } (HZee) \\ \mathsf{G} & \delta \Gamma_Z^{\mathrm{tot}}/\Gamma_{Z,SM} \text{ on } + \text{off-shell } Z \\ \end{array}$$

Ilaria Brivio (ITP Heidelberg)

(1) photon-mediated diagrams

 $\mathcal{O}(1-250)\%$ effect

		with γ		,	without γ	
	\bar{C}_{HW}	Ē _{HΒ}	\bar{C}_{HWB}	Ē _{ΗW}	Ē _{HB}	\bar{C}_{HWB}
$h ightarrow e^+ e^- \mu^+ \mu^-$	0.26	-1.30	-0.38	-0.77	-0.22	0.30
$h ightarrow ar{u} u ar{c} c$	1.45	-2.63	-0.29	-0.77	-0.22	1.33
$h ightarrow e^+ e^- \bar{d} d$	0.50	-1.55	-0.37	-0.77	-0.22	0.47
$h \rightarrow e^+ e^- e^+ e^-$	0.02	-2.28	0.27	-0.76	-0.21	0.44
$h ightarrow ar{u} u ar{u} u$	1.39	-2.72	-0.14	-0.76	-0.21	1.19
$h \to e^+ e^- \bar{\nu}_e \nu_e$	-1.49	0.01	-0.06	-1.48	-0.007	-0.07

(2) Z - W interference terms

 $\mathcal{O}(1-200)\%$ effect

 $\delta \Gamma(H \to e^+ e^- \bar{\nu}_e \nu_e) / \Gamma_{\rm SM}$ omitting γ and $\delta \Gamma_Z, \delta \Gamma_W$ contrib.

	\bar{C}_{HW}	Ē _{HB}	\bar{C}_{HWB}	$\bar{C}_{H_{\Box}}$	Ē _{HD}	$ar{C}^{(1)}_{HI}$	$\bar{C}_{HI}^{(3)}$	Ēне	$\bar{C}_{Hq}^{(1)}$	$\bar{C}_{Hq}^{(3)}$	\bar{C}_{Hu}	\bar{C}_{Hd}	$\bar{C}'_{\prime\prime}$
ZZ	-0.04	-0.01	-0.003	0.09	-0.008	0.004	-0.19	-0.04	0	0	0	0	0.14
WW	-1.49	0	0	2.0	-0.50	0	-3.77	0	0	0	0	0	3.00
WZ	0.04	0.004	-0.06	-0.10	-0.04	-0.01	0.21	0	0	0	0	0	-0.14
full	-1.49	-0.007	-0.07	2.	-0.55	-0.008	-3.74	-0.04	0	0	0	0	3.
NW	-1.46	-0.01	-0.003	2.	-0.49	0.004	-3.77	-0.04	0.	0.	0.	0.	3.

fullZZ + WW + WZNWZZ + WW

(3) NC crossed - interference terms

 $\mathcal{O}(\text{few}-40)\%$ effect

 $\delta\Gamma(H\to e^+e^-e^+e^-)/\Gamma_{\rm SM}\,$ incl. only ZZ and HZee diagrams

	\bar{C}_{HW}	Ē _{HB}	\bar{C}_{HWB}	$\bar{C}_{H \circ}$	\bar{C}_{HD}	$ar{\mathcal{C}}_{H\!I}^{(1)}$	$ar{C}_{HI}^{(3)}$	\bar{C}_{He}	$ar{\mathcal{C}}_{Hq}^{(1)}$	$ar{C}_{Hq}^{(3)}$	Ē _{Ηu}	\bar{C}_{Hd}	$\bar{C}'_{\prime\prime}$
full	-0.75	-0.22	0.43	2.	0.28	2.09	-3.91	-1.64	0	0	0	0	3.
NW	-0.78	-0.221	0.30	2.	0.17	2.15	-3.85	-1.73	0.	0.	0.	0.	3.

$$\begin{array}{c|c} \mathsf{full} & |\mathcal{A}_{ijkl}|^2 + |\mathcal{A}_{ilkj}|^2 + 2\mathrm{Re}\mathcal{A}_{ijkl}\mathcal{A}_{ilkj}^{\dagger} \\ \mathsf{NW} & |\mathcal{A}_{ijkl}|^2 + |\mathcal{A}_{ilkj}|^2 \end{array}$$

Ilaria Brivio (ITP Heidelberg)

(4) $\delta \Gamma_V$, δm_V from off-shell boson

 $\mathcal{O}(\mathsf{few})\%$ effect

narrow width approx.:

$$\frac{\delta\Gamma(H \to VV^* \to 4f)}{\Gamma_{SM}(H \to VV^* \to 4f)} = (-1)\frac{\delta\Gamma_V}{\Gamma_{V,SM}} + \dots$$

full calculation:

$H \rightarrow 4f$ summary

- we did a fully analytic calculation, with numerical integration of phase space
- also generated all channels with MG5_aMC@NLO using SMEFTsim \rightarrow agreement to 1% or better \checkmark
- analytic treatment has a few advantages:
 - allows to separate contributions
 - easier to linearize in $\delta \Gamma_V, \delta m_V$
 - more stable for the massless fermions case with γ diagrams
 - cancellations are reproduced exactly
 - calculation can be **automated** in a dedicated package

```
\longrightarrow a new reweighting tool coming soon
```

some previously neglected contributions turn out to be relevant:

 γ diagrams and Z - W interference

Brivio, Jiang, Trott 1709.06492

putting together all the main contributions* we obtain

$$\begin{split} \Gamma_{H}^{\rm tot} &= \Gamma_{H,SM}^{\rm tot} \left[1 + \frac{\delta \Gamma_{H}^{\rm tot}}{\Gamma_{H,SM}^{\rm tot}} \right] \\ \Gamma_{H,SM}^{\rm tot} &= 4.100 \; {\rm MeV} \\ \frac{\delta \Gamma_{H}^{\rm tot}}{\Gamma_{H,SM}^{\rm tot}} &= -1.50 \; \tilde{C}_{HB} - 1.21 \; \tilde{C}_{HW} + 1.21 \; \tilde{C}_{HWB} + 50.6 \; \tilde{C}_{HG} \\ &+ 1.83 \; \tilde{C}_{Ha} - 0.43 \; \tilde{C}_{HD} + 1.17 \; \tilde{C}_{II}' \\ &- 7.85 \, Y_c \; \Re \tilde{C}_{uH} - 48.5 \, Y_b \; \Re \tilde{C}_{dH} - 12.3 \, Y_\tau \; \Re \tilde{C}_{eH} \\ &+ 0.002 \; \tilde{C}_{Hq}^{(1)} + 0.06 \; \tilde{C}_{Hq}^{(3)} + 0.001 \; \tilde{C}_{Hu} - 0.0007 \; \tilde{C}_{Hd} \\ &- 0.0009 \; \tilde{C}_{HI}^{(1)} - 2.32 \; \tilde{C}_{HI}^{(3)} - 0.0006 \; \tilde{C}_{He}, \end{split}$$

 $*gg + \gamma\gamma + \bar{b}b + \bar{c}c + \tau^+\tau^- + 4f + \bar{f}f\gamma$

Conclusions

- the inclusive Higgs width is <u>a crucial observable</u> for the Higgs sector
- improved calculation of $H \rightarrow 4f, H \rightarrow \bar{f}f\gamma$ without relying on the narrow width approx. for Z, W \rightarrow important for LHC measurements
- joined all the main channels into $\delta \Gamma_H^{\text{tot}}$
- Br's and Γ^{tot}_H are computed **once and for all!** → can be used directly without further MC generation
- an automated package for lhe reweighting to appear soon!
- possible refinements: full massive fermions treatment phase space integration with cuts

Backup slides

The Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}u_{r}\widetilde{arphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}d_{r}arphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$					
	$X^2 \varphi^2$		$\psi^2 X \varphi$	$\psi^2 arphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}^{A}_{\mu u} G^{A \mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu u} T^A d_r) \varphi G^A_{\mu u}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I \varphi W^I_{\mu u}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$	

Ilaria Brivio (ITP Heidelberg)

The Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$			
Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$			
$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r)(ar{u}_s \gamma^\mu u_t)$			
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$			
$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$			
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$			
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$			
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$			
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating						
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(d_p^{lpha}) ight.$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$			
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j}) ight.$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}arepsilon_{mm}\left[(q_p^{lpha j})^TCq_r^{etak} ight]\left[(q_s^{\gamma m})^TCl_t^n ight]$					
$Q_{lequ}^{(1)}$	$(ar{l}_p^{j}e_r)arepsilon_{jk}(ar{q}_s^ku_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight.$	Cu_r^{β}	$\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu u} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu u} u_t)$							

Ilaria Brivio (ITP Heidelberg)

SM case.

Parameters in the canonically normalized Lagrangian : $ar{v}, ar{g}_1, ar{g}_2, s_{ar{ heta}}$

The values can be inferred from the measurements e.g. of $\{\alpha_{em}, m_Z, G_f\}$:

in the SM at tree-level $\bar{\kappa} = \hat{\kappa}$

SMEFT case.

Parameters in the canonically normalized Lagrangian : $ar{v}, ar{g}_1, ar{g}_2, s_{ar{ heta}}$

The values can be inferred from the measurements e.g. of $\{\alpha_{em}, m_Z, G_f\}$:

$$\begin{aligned} \hat{v}^2 &= \frac{1}{\sqrt{2}G_f} \\ \alpha_{\rm em} &= \frac{\bar{g}_1 \bar{g}_2}{\bar{g}_1^2 + \bar{g}_2^2} \begin{bmatrix} 1 + \bar{v}^2 C_{HWB} \frac{\bar{g}_2^3 / \bar{g}_1}{\bar{g}_1^2 + \bar{g}_2^2} \end{bmatrix} & \sin \hat{\theta}^2 &= \frac{1}{2} \left(1 - \sqrt{1 - \frac{4\pi \alpha_{\rm em}}{\sqrt{2}G_f m_Z^2}} \right) \\ m_Z &= \frac{\bar{g}_2 \bar{v}}{2c_{\bar{\theta}}} + \delta m_Z(C_i) & \rightarrow \\ G_f &= \frac{1}{\sqrt{2}\bar{v}^2} + \delta G_f(C_i) & \hat{g}_1 &= \frac{\sqrt{4\pi \alpha_{\rm em}}}{\cos \hat{\theta}} \\ \hat{g}_2 &= \frac{\sqrt{4\pi \alpha_{\rm em}}}{\sin \hat{\theta}} \end{aligned}$$

in the SM at tree-level $\bar{\kappa} = \hat{\kappa}$ in the SMEFT $\bar{\kappa} = \hat{\kappa} + \delta \kappa(C_i)$

To have numerical predictions it is necessary to replace $\bar{\kappa} \rightarrow \hat{\kappa} + \delta \kappa(C_i)$ for all the parameters in the Lagrangian.

 $\{\alpha_{\rm em}, m_Z, G_f\}$ scheme

$$\begin{split} \delta m_Z^2 &= m_Z^2 \hat{v}^2 \left(\frac{c_{HD}}{2} + 2c_{\hat{\theta}} s_{\hat{\theta}} c_{HWB} \right) \\ \delta G_f &= \frac{\hat{v}^2}{\sqrt{2}} \left((c_{HI}^{(3)})_{11} + (c_{HI}^{(3)})_{22} - (c_{II})_{1221} \right) \\ \delta g_1 &= \frac{s_{\hat{\theta}}^2}{2(1 - 2s_{\hat{\theta}}^2)} \left(\sqrt{2} \delta G_f + \delta m_Z^2 / m_Z^2 + 2 \frac{c_{\hat{\theta}}^3}{s_{\hat{\theta}}} c_{HWB} \hat{v}^2 \right) \\ \delta g_2 &= -\frac{c_{\hat{\theta}}^2}{2(1 - 2s_{\hat{\theta}}^2)} \left(\sqrt{2} \delta G_f + \delta m_Z^2 / m_Z^2 + 2 \frac{s_{\hat{\theta}}^3}{c_{\hat{\theta}}} c_{HWB} \hat{v}^2 \right) \\ \delta s_{\theta}^2 &= 2c_{\hat{\theta}}^2 s_{\hat{\theta}}^2 (\delta g_1 - \delta g_2) + c_{\hat{\theta}} s_{\hat{\theta}} (1 - 2s_{\hat{\theta}}^2) c_{HWB} \hat{v}^2 \\ \delta m_h^2 &= m_h^2 \hat{v}^2 \left(2c_{H_{\square}} - \frac{c_{HD}}{2} - \frac{3c_H}{2lam} \right) \end{split}$$

To have numerical predictions it is necessary to replace $\bar{\kappa} \rightarrow \hat{\kappa} + \delta \kappa(C_i)$ for all the parameters in the Lagrangian.

 $\{m_W, m_Z, G_f\}$ scheme

$$\begin{split} \delta m_Z^2 &= m_Z^2 \hat{v}^2 \left(\frac{c_{HD}}{2} + 2c_{\hat{\theta}} s_{\hat{\theta}} c_{HWB} \right) \\ \delta G_f &= \frac{\hat{v}^2}{\sqrt{2}} \left((c_{Hl}^{(3)})_{11} + (c_{Hl}^{(3)})_{22} - (c_{ll})_{1221} \right) \\ \delta g_1 &= -\frac{1}{2} \left(\sqrt{2} \delta G_f + \frac{1}{s_{\hat{\theta}}^2} \frac{\delta m_Z^2}{m_Z^2} \right) \\ \delta g_2 &= -\frac{1}{\sqrt{2}} \delta G_f \\ \delta s_{\theta}^2 &= 2c_{\hat{\theta}}^2 s_{\hat{\theta}}^2 (\delta g_1 - \delta g_2) + c_{\hat{\theta}} s_{\hat{\theta}} (1 - 2s_{\hat{\theta}}^2) c_{HWB} \hat{v}^2 \\ \delta m_h^2 &= m_h^2 \hat{v}^2 \left(2c_{H_{\Box}} - \frac{c_{HD}}{2} - \frac{3c_H}{2lam} \right) \end{split}$$

The SMEFTsim package

an UFO & FeynRules model with*:

Brivio, Jiang, Trott 1709.06492 feynrules.irmp.ucl.ac.be/wiki/SMEFT

- the complete B-conserving Warsaw basis for 3 generations, including all complex phases and CP terms
- 2. automatic field redefinitions to have canonical kinetic terms

3. automatic parameter shifts due to the choice of an input parameters set

Main scope:

estimate tree-level $|A_{SM}A^*_{d=6}|$ interference terms \rightarrow theo. accuracy $\gtrsim 1\%$

 st at the moment only LO, unitary gauge implementation

Ilaria Brivio (ITP Heidelberg)

The Higgs width in the SMEFT

→→ backup

The SMEFTsim package

fe	nru	les irm	n ucl	ac he	/wiki	SMFFT	
	y 1 1 1 Ca	C3.1111	piucii	uc.bc/	VV IIVI		

Pre-exported UFO files (include restriction cards)

Standard Model Effective Field Theory -- The SMEFTsim package

Authors

wk: SMEFT

Ilaria Brivio, Yun Jiang and Michael Trott

ilaria.brivio@nbi.ku.dk, yunjiang@nbi.ku.dk, michael.trott@cern.ch

NBIA and Discovery Center, Niels Bohr Institute, University of Copenhagen

	Set A		Set B	
	a scheme	m _W scheme	α scheme	m _W scheme
Flavor general SMEFT	SMEFTsim_A_general_alphaScheme_UFO.tar.gz	SMEFTsim_A_general_MwScheme_UFO.tar.gz	↓SMEFT_alpha_UFO.zip ↓.	SMEFT_mW_UFO.zip 🕁
MFV SMEFT	SMEFTsim_A_MFV_alphaScheme_UFO.tar.gz	SMEFTsim_A_MFV_MwScheme_UFO.tar.gz 🕁	SMEFT_alpha_MFV_UFO.zip	SMEFT_mW_MFV_UFO.zip
U(3) ⁵ SMEFT	SMEFTsim_A_U35_alphaScheme_UFO.tar.gz 🕁	SMEFTsim_A_U35_MwScheme_UFO.tar.gz 🛃	SMEFT_alpha_FLU_UFO.zip	SMEFT_mW_FLU_UFO.zip 🕁