

Higgs to WW Run 2 results at CMS

Jónatan Piedra, on behalf of the CMS Collaboration

IFCA (CSIC - Universidad de Cantabria)

Higgs Couplings 30 September - 4 October, 2019, Oxford, UK

More data, more pileup

Main backgrounds

Results covered in this talk

Related results covered in other talks

- October 1st Measurements of Higgs couplings to gauge bosons at CMS and ATLAS @ 9:30 Piergiulio Lenzi
- October 1st Measurements of ttH and tH production at ATLAS and CMS @14:40 Peter Onyisi
- October 1st Prospects for Higgs boson measurements at the HL-LHC @17:15 **Nicola De Filippis**

Results covered in this talk

HIG-16-042 Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at 13 TeV

February 2019 Phys. Lett. B 791 (2019) 96

HIG-17-033

Search for a heavy Higgs boson decaying to a pair of W bosons in pp collisions at 13 TeV

Measurement of Higgs differential production cross section in the leptonic WW decay mode at 13 TeV

October 2019

NEW FOR HC 2019

$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell\ell} p_{\rm T}^{\rm miss} [1 - \cos \Delta \phi(\ell\ell, \vec{p}_{\rm T}^{\rm miss})]}$

Events are split in 30 categories

category		subcategories	expected	observed ± total uncertainty	signal extraction
ggH DF	17	0-jet (x8) 1-jet (x8) 2-jet (x1)	509 313 103	677 ± 31 398 ± 19 130 ± 16	<i>m</i> ∥ vs <i>m</i> ⊤ shape
2-jet VBF DF	2	400 < m _{jj} < 700 GeV m _{jj} > 700 GeV	31	40 ± 3	<i>m</i> ∥ shape
2-jet VH DF	1	eµ	20	25 ± 3	<i>m</i> ∥ shape
ggH SF	6	0-jet <mark>(x4)</mark> 1-jet <mark>(x2)</mark>	240 93	337 ± 24 108 ± 13	event count
3-lepton WH	2	µ∓µ±e∓ / e∓e±µ∓ µ±µ±e∓ / e±e±µ∓	5.6	7.4 ± 0.7	min ΔR_{\parallel} shape
4-lepton ZH	2	SF + Z DF + Z	2.7	3.5 ± 0.3	event count

m_µ [GeV]

1 2

m_⊪ [GeV]

 $\min \Delta \mathsf{R}_{\!\! |\!|}$

Signal strength measurements

 $\sigma/\sigma_{
m SM}=\mu=1.28^{+0.18}_{-0.17}$

Signal strengths measured by a simultaneous likelihood fit on all signal (30) and background (12) regions. **The observed** (expected) significance is 9.1 (7.1)

The biggest uncertainties are ggH theoretical uncertainty and electrons reco+ID

2∆ InL

18

16

14

12

-10

8

6

4

2

0

18

16

14

12

10

8

6

2

0

2d InL

35.9 fb⁻¹ (13 TeV)

68% CL

95% CL

Best fit

CMS *Preliminary*

3

2.5

2

1.5

0.5

ц ц

Results covered in this talk

16-042 Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at 13 TeV **February 2019** Phys. Lett. B 791 (2019) 96

HIG-17-033

Search for a heavy Higgs boson decaying to a pair of W bosons in pp collisions at 13 TeV

Measurement of Higgs differential production cross section in the leptonic WW decay mode at 13 TeV

March 2019

October 2019

NEW FOR HC 2019

Squeezing events to find a high mass Higgs boson

visible mass
$$m_{T}^{I} = \sqrt{(p_{\ell\ell} + E_{T}^{miss})^{2} - (\vec{p}_{\ell\ell} + \vec{p}_{T}^{miss})^{2}}$$

Final state	InIn		Inqq	
topology	em	ee, mm	boosted	resolved
Discriminant	visible mass		WW invariant mass <i>m</i> _{WW}	
Categories	0j, 1j, 2j VBF-fail, 2j VBF	2j VBF	VE ggF (VBF-fail an untagged	BF d "MELA" > 0.5) (ggF-fail)
Lepton <i>pt</i>	> 25, 20 GeV	> 20, 20 GeV	> 30	GeV
MET	> 20 GeV	> 50 GeV	> 40 GeV	> 30 GeV
b-tagged jets	no 20 GeV b-tagged jets		no 20 GeV b-tagged jets	
Additional requirements	<i>m</i> ⊪ > 50 GeV	<i>m</i> ⊪ > 120 GeV	65 < <i>m</i> J < 105 GeV <i>pt</i> w / <i>m</i> WW > 0.4	65 < m _{jj} < 105 GeV pt _w / m _{WW} > 0.35
	pt _{ll} > 30 GeV m _T ′ > 100 GeV m _T > 60 GeV			<i>m</i> _T ^w > 50 GeV <i>m</i> _T > 60 GeV
Main backgrounds	WW and top both with floating normalization		W+jets both with floatir	and top ng normalization

Limits

Limits set on σ_X for different VBF fractions, tan β -m_H in 2HDM models, and tan β -m_A in hMSSM

Measurement of Higgs differential production cross October 2019 HIG-19-002

section in the leptonic WW decay mode at 13 TeV

NEW FOR HC 2019

 σ (Higgs pt) sensitive to possible SM deviations of the light quarks Yukawa couplings

Analysis strategy

Differential distributions are measured for pt(H) and N_{jets}

In every pt(H) or N_{jets} bin a 2D fit of the m_{\parallel} vs. m_{T} shape is performed

The top and DY backgrounds are normalized in their control regions for each pt(H) and N_{jets} bin

Selection	Requirements	Note
Preselection	leading two leptons have opposite sign and different flavour, $p_T^{\ell_1} > 25 \text{GeV}, p_T^{\ell_2} > 13 \text{GeV},$ $ \eta < 2.5 (2.4) \text{ for e } (\mu),$ $p_T^{\text{miss}} > 20 \text{GeV}, p_T^{\ell\ell} > 30 \text{GeV},$ no additional leptons with $p_T > 10 \text{GeV}$	
Signal region	$m^{\ell\ell} > 12 \text{GeV}, m_{\text{T}}^{\text{H}} > 60 \text{GeV}, m_{\text{T}}^{\ell_2} > 30 \text{GeV},$ no b-tagged jets with $p_{\text{T}} > 20 \text{GeV}$	Binned by $p_{\rm T}^{\rm H}$ or $N_{\rm jet}$ and categorized by lepton properties
tt control region	$m^{\ell\ell} > 50 \text{GeV}, m_{\text{T}}^{\ell_2} > 30 \text{GeV},$ at least one b-tagged jet with $p_{\text{T}} > 20 \text{GeV}$ if $N_{\text{jet}} = 0$, else $p_{\text{T}} > 30 \text{GeV}$	Binned by $p_{\mathrm{T}}^{\mathrm{H}}$ or N_{jet}
$ au^+ au^-$ control region	$40 < m^{\ell \ell} < 80 \text{GeV}, m_{\mathrm{T}}^{\mathrm{H}} < 60 \text{GeV},$ no b-tagged jets with $p_{\mathrm{T}} > 20 \text{GeV}$	Binned by $p_{\rm T}^{\rm H}$ or $N_{\rm jet}$

Signal model and fit

Each signal event is classified as fiducial or nonfiducial, with the **fiducial definition very close to the analysis signal region**

Leptons are "dressed" with nearby photons

The fiducial component of each gen-level bin is extracted from a regularized fit

Lepton origin	Direct decay product of $H \rightarrow WW$
Lepton flavor and charge	Different flavor, opposite charge
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}}^{\ell_1} > 25\mathrm{GeV}$
Trailing lepton $p_{\rm T}$	$p_{\mathrm{T}}^{\ell_2} > 13 \mathrm{GeV}$
Pseudorapidity of the leptons	$ \eta < 2.5$
Dilepton mass	$m^{\ell\ell} > 12{ m GeV}$
Dilepton transverse momentum	$p_{\mathrm{T}}^{\ell\ell} > 30\mathrm{GeV}$
Transverse mass of trailing lepton	$m_{\mathrm{T}}^{\ell_2} > 30\mathrm{GeV}$
Higgs transverse mass	$m_{\rm T}^{\rm H} > 60 { m GeV}$

FIDUCIAL REGION DEFINITION

Postfit *m*_{II} distributions for the different jet bins

$\sigma^{\rm SM} = 82.5 \pm 4.2 \, {\rm fb}$

18

Full Run 2 differential and fiducial results

 $\mu^{\text{fid}} = 1.03^{+0.12}_{-0.11} \ \left(\begin{smallmatrix} +0.05 \\ -0.05 \end{smallmatrix} (\text{stat.}) \begin{smallmatrix} +0.08 \\ -0.07 \end{smallmatrix} (\text{theo.}) \begin{smallmatrix} +0.03 \\ -0.03 \end{smallmatrix} (\text{lumi.}) \begin{smallmatrix} +0.07 \\ -0.07 \end{smallmatrix} (\text{exp.}) \right)$ $\sigma^{\text{fid}} = 85.0^{+9.9}_{-9.3} \text{ fb}$

Conclusions

Run 2 HWW results have been shown, from its first observation at CMS to its differential cross section

$$\sigma/\sigma_{
m SM} = \mu = 1.28^{+0.18}_{-0.17} = 1.28 \pm 0.10 \; ({
m stat}) \pm 0.11 \; ({
m syst})^{+0.10}_{-0.07} \; ({
m theo})$$

$$\begin{split} \mu^{\text{fid}} &= 1.03^{+0.12}_{-0.11} \ \left(\begin{smallmatrix} +0.05 \\ -0.05 \end{smallmatrix} (\text{stat.}) \begin{smallmatrix} +0.08 \\ -0.07 \end{smallmatrix} (\text{theo.}) \begin{smallmatrix} +0.03 \\ -0.03 \end{smallmatrix} (\text{lumi.}) \begin{smallmatrix} +0.07 \\ -0.07 \end{smallmatrix} (\text{exp.}) \right) \\ \sigma^{\text{fid}} &= 85.0^{+9.9}_{-9.3} \text{ fb} \end{split}$$

Signal strengths have been measured for several production modes

New limits have been set on a SM-like heavy Higgs boson, and in the Higgs mass vs. $\tan\beta$ for 2HDM and MSSM scenarios

Backup slides

Expected relative fractions

The 0-jet ggH categories (750 expected events) are very clean

On the other hand the 2-jet DF VH category (20 events) is quite "ggH-contaminated"

Split 0- and 1-jet DF ggH in 8 categories \Rightarrow 15% improvement in expected significance

