

On the factorizable and non-factorizable QCD corrections to Vector Boson Fusion

Alexander Karlberg

Higgs Couplings 2019 Oxford, United Kingdom

Work done in Collaboration with Frédéric Dreyer to appear soon

The factorized picture

- Historically QCD corrections to VBF have been computed in a framework where the two incoming protons do not exchange coloured particles
- In this framework one can think of VBF as two protons undergoing deep inelastic scattering
- One can therefore obtain the VBF cross section directly from DIS ingredients [Han, Valencia, Willenbrock (1992)]

- This approach omits a large number of known contributions: s-channel, t/u-channel interference, ggF interference, single-quark line and heavy quark loop induced contributions
- Although some of these can be sizeable when no cuts are applied, they are all reduced to or below the permille level when VBF cuts are applied [Bolzoni et al. (2011)]

Non-factorizable corrections pre June 2019

 \rightarrow Identically zero due to colour conservation

Contributes to the three jet cross section [Campanario et al. (2013)], but is known to be kinematically suppressed in the VBF phase space [Bolzoni et al. (2011)]

→ Impossible to compute but estimated to contribute at the permille level based on colour suppression $(1/N_c^2)$ and lower order Abelian calculation [Bolzoni et al. (2011)]

History of factorizable QCD corrections

- Due to these considerations a lot of effort has been put into computing radiative corrections in the factorized picture
- The full NLO corrections were computed a long time ago [Figy, Oleari, Zeppenfeld (2003)]. They are moderate in size and have small residual scale uncertainties.
- The inclusive NNLO corrections followed [Bolzoni et al. (2011)] with small corrections and residual scale uncertainties.
- However under VBF cuts the corrections were shown to be larger than the NLO scale uncertainties suggested [Cacciari et al.

(2015)], [Cruz-Martinez et al. (2018)]

• Finally the inclusive N3LO corrections were computed with tiny corrections and residual scale uncertainties, showing excellent convergence of the perturbative series

[Dreyer, AK (2016)]

 $ightarrow \, {
m VBF}$ understood at the 1%-level

History of factorizable QCD corrections

Non-factorizable QCD [1906.10899]

- Very recently the non-factorizable QCD corrections were estimated in the eikonal approximation [Liu, Melnikov, Penin (2019)]
- Result expressed as an expansion in $p_{t,j}/\sqrt{s}$, which is argued to be small due to large m_{jj} requirement in typical VBF analyses
- Only leading power available, but argued to have an uncertainty of a few percent in most regions of phase space
- Result proportional to Born cross section, as real emission diagrams show up at higher power

$$\mathrm{d}\sigma_{\mathrm{nf}}^{\mathrm{NNLO}} = \left(\frac{N_c^2 - 1}{4N_c^2}\right) \alpha_s^2 \chi_{\mathrm{nf}}\left(q_{\perp,1}, q_{\perp,2}\right) \mathrm{d}\sigma^{\mathrm{LO}}$$

! Colour suppressed but π^2 -enhanced (Glauber phase)

Non-factorizable QCD [1906.10899]

VBF cuts: $m_{jj} > 600 \text{ GeV}, \quad \Delta y_{jj} > 4.5, \quad y_{j_1}y_{j_2} < 0$

 $d\sigma^{LO}=957~\text{fb},\qquad d\sigma^{NNLO}_{nf}=-3.73~\text{fb},\qquad d\sigma^{NNLO}_{f}=-32~\text{fb}$

Although non-factorizable corrections are of the order of several permille, they are clearly suppressed compared to their factorizable counterparts.

Fiducially they can grow to the percent level:

- Although this calculation "completes" the computation of NNLO QCD corrections to VBF, there are a few questions that need a more detailed study:
 - How do the NF corrections compare fiducially to the F corrections and the associated scale uncertainty?
 - How good is the eikonal approximation when VBF cuts are applied?
 - How good is the eikonal approximation when no cuts are applied?
- \rightarrow Address these questions quantitatively and qualitatively

Validity of eikonal approximation

Large fraction of VBF cross section has $p_{t,j}/\sqrt{s} < 0.2$

Inclusive results

 $p_{t,j}/\sqrt{s} < 0.2$ cut only changes the NF corrections at large $p_{t,H}$

Inclusive results

- When the eikonal approximation breaks down, we no longer expect the NF corrections to be enhanced by a Glauber phase
- Therefore the usual argument about them being subdominant applies
- The corrections computed in the eikonal approximation can therefore be used to *estimate* the size of the full NF corrections
- The results seem to suggest that the NF corrections are
 - of the same order of magnitude as the F corrections when considering the fully inclusive cross section
 - significantly larger than the F N3LO corrections
 - outside the scale uncertainty band of the F NNLO corrections

NF vs F

<i>m_{jj, cut}</i> [GeV]												
	Ó	100	200	300	400	500	600	700	800	900		- 0
0 -	8.4	6.8	6.3	5.9	5.3	4.6	3.9	3.6	3.1	2.6		
	7.6	7.1	6.5	6.0	5.4	4.6	3.9	3.6	3.1	2.6		- 2
1	7.6	7.3	6.8	6.2	5.6	4.8	4.0	3.7	3.2	2.6		- 4
	7.8		7.2	6.6	5.9	5.0	4.2	3.9	3.3	2.8		
⊲ 2.	8.3	8.3	7.8	7.1	6.4	5.4	4.5	4.2	3.6	3.0		- 6
,У.jj, с	8.9	8.9	8.4	7.9	7.2	6.2	5.1	4.8	4.1	3.5		8 8
÷ 3 ا	9.3	9.3	9.1	8.8	8.3	7.2	6.1	5.8	5.0	4.3		
	10.6	10.6	10.6	10.3	9.7	8.8	7.5	7.3	6.3	5.5		10
4	11.5				10.8	10.4	9.1	9.0	8.2	7.4		- 12
	13.3							11.0	10.0	9.5		
5	15.1	15.1	15.1	15.1	15.0	14.8	14.3	13.5	12.6	12.0		- 14

Conclusions

- Recent calculation of NNLO NF corrections found that they are Glauber phase enhanced
- However NF corrections almost everywhere contained within F scale uncertainty band \rightarrow same size as N3LO corrections
- When going fully inclusive the eikonal approximation breaks down
- However, it still captures the bulk of the NF corrections
- In this inclusive setup the NF corrections are found to be of the same order of magnitude as their F counterparts
- NF corrections have been implemented in proVBFH and will be released soon

Di-Higgs (low stats)

5	27.6	27.6	27.6	27.6	27.9	28.5	28.1	30.5	31.1	29.4		- 35
	30.4											
4	31.6											- 30
	31.6								26.4	23.9		- 25
_ب 3-	32.6						28.5		22.7	19.8		
У <i>ј</i> ј, с	35.6						23.7	25.9	17.9	15.3		²⁰ 8
²	32.7					23.8	18.8	20.7	13.7	10.7		- 15
	26.9	26.8	28.6	26.2	26.4	20.8	15.6	17.5	10.9	8.3		10
1	21.6	22.2	24.6	23.5	23.5	18.7	13.2	14.9	9.1	6.4		- 10
	15.3	17.4	21.0	21.1	21.1	17.1	11.9	13.0	8.0	5.4		- 5
0	10.9	14.1	18.3	19.1	19.6	16.4	11.2	12.4	7.4	4.9		
	Ó	100	200	300	400 <i>m_{jj, cut}</i>	500 [GeV]	600	700	800	900	•	— 0

