LOCAL ORGANISING COMMITTEE: ALAN BARR DANIELA BORTOLETTO FABRIZIO CAOLA LUCIAN HARLAND-LANG CHRIS HAVS CIGDEM ISSEVER. JOHN MARCH-RUSSELL GAVIN SALAM SUBIR SARKAR IAN SHIPSEY

HIGGS COUPLINGS 2019

FABRIZIO CAOLA MARIA CEPEDA HERMIDA AEL DUEHR, ISEN-DEBLING VUII ENARI KEISUKE FUIII ITEFAN HOECHE MARDMI KADO IHINVA KANEMUKA ANEESH MANOHAR CHIKRA MARJOTT OLO MERIDIANI NAKRED PIERI TILMAN PLEHN

PROSPECTS FOR HEGGS OXFURD MEASUREMENTS AT THE HEALHC

SPONSOR SHIP FROM

Science & Technology facilities Council

PAINTING FROM HTTP://WWW.GUSNAILLSGALLERY.CO.UK

Nicola De Filippis Politecnico & INFN, Bari and LPC-FNAL, Bata

Sept. 30 - Oct. 4, 2019, Higgs Coupling 2019, Oxford

Physics landscape at the end of Run 2

LHC experiments confirm that the SM is robust but it should not be the ultimate theory of particle physics, because of many questions:

- why is the Higgs boson so light ("naturalness"/fine-tuning/hierarchy problem) ?
- what is the the nature of the dark part (96% !) of the universe ?
- what is the origin of the matter-antimatter asymmetry ?
- why is gravity so weak ?
- Is supersymmetry realized in Nature?
- Inflation

No excess in data for direct signs of new physics:

- Supersymmetry
- Long-lived particles
- New heavy resonances
- Dark Matter and its nature

Doing Precision measurements (Couplings, Cross Sections, Width, Differential Distributions,...) which might be an indirect sign of BSM physics

N. De Filippis

LHC and HL-LHC schedule

CMS Phase 2 upgrade

New Tracker

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to $\eta \sim 4$

Barrel ECAL

- Replace FE electronics
- Cool detector/APDs

Barrel HCAL

- Replace HPD by SiPM
- Replace inner layers scint. tiles?

Trigger/DAQ

- L1 (hardware) with tracks and rate up ~ 750 kHz
- L1 Latency 12.5 µs
- HLT output rate 7.5 kHz
- New DAQ hardware

Muons

- Replace DT FE electronics
- Complete RPC coverage in forward region (new GEM/RPC technology)
- Investigate Muon-tagging up to $\eta\sim 3$
- CSC replace FE-Elec. for inner rings (ME 2/1, 3/1, 4/1)

New Endcap Calorimeters

- Radiation tolerant
- High granularity (HGCAL)

New all Al beam pipe with smaller cone angle and cyl. central pipe

Timing layer

- Timing resolution ~ 10 ps
- Space resolution ~ 10's of µm

N. De Filippis

Strategy for Higgs physics @ HL-LHC

Phase II Detector Upgrades:

- Radiation hardness
- Mitigate physics impact of high pileup
- → Object reconstruction efficiencies, resolutions and fake rates are assumed to be similar in the Run-2 and HL-LHC environments

Higgs@HL-LHC:

- Precision Measurements (Couplings, Cross Sections, Width, differential Distributions,...) → looking for deviations from the SM
- BSM Higgs direct searches: extra scalars, BSM Higgs resonances, exotic decays, anomalous couplings
- VBS scattering
- Rare decays and couplings: $H \rightarrow \mu\mu$, $H \rightarrow ee$, $H \rightarrow cc$, $H \rightarrow Z\gamma$
- Di-Higgs production → Higgs self coupling

N. De Filippis

Analysis approaches for HL-LHC

- Method 1: Full simulation (CMS): use of the most advanced geometry, algorithms and tuning, PU simulation
- Method 2: Full analysis with parameterized detector performance (CMS): use DELPHES with up-to-date phase-2 detector performance (tracking, vertexing, timing, dedicated PUPPI jet algorithms, increased acceptance, performance of new detectors)
- Method 3: truth + smearing (ATLAS): truth-level events overlaid with jets (full sim) from pileup library, reconstruct particles (electrons, muons, jets, MET) from MC truth+overlay and smear their energy and p_T using appropriate smearing functions → cross checked with some of the 'real' data analyses

Method 4: projections (mostly CMS and LHCb)

- Existing signal and background samples (simulated at 13 TeV) scaled to higher lumi and \sqrt{s} =14 TeV. Analysis steps (cuts) from present analyses.
- 2 scenarios for uncertainties:
 - Scenario 1: all systematic uncertainties are kept unchanged with respect to those in current data analyses
 - Scenario 2: the theoretical uncertainties are scaled by a factor of 1/2, while other systematical uncertainties are scaled by $1/\sqrt{L}$

N. De Filippis

Modeling the projections for HL-LHC

Experimental uncertainties:

• Estimates of **ultimately achievable accuracy** based on the upgraded Phase-2 detectors studies (TDRs).

• Assumption that sufficiently large simulation samples will be available

- ID and isolation efficiencies for electrons and muons reduced to approximately 0.5%.
- hadronic τ lepton ID uncertainty reduced to approximately 2.5%.
- uncertainty in the overall jet energy scale (JES) reduced to 1% precision for jets with $p_T > 30$ GeV, driven primarily by improvements in the absolute scale and jet flavour calibrations

Theoretical	uncortaint	line
medicula	uncertaini	162.

- Build upon existing/recent TH progress/studies
- Assume a scaling down by a constant factor
- QCD calculations (1/2), understanding of PDFs (1/3), top p_T (1/2), etc.

	-		
Source	Component	Run 2 uncertainty	Projection minimum uncertainty
Muon ID		1–2%	0.5%
Electron ID		1–2%	0.5%
Photon ID		0.5–2%	0.25–1%
Hadronic tau ID		6%	2.5%
Jet energy scale	Absolute	0.5%	0.1–0.2%
	Relative	0.1–3%	0.1–0.5%
	Pileup	0–2%	Same as Run 2
	Method and sample	0.5–5%	No limit
	Jet flavour	1.5%	0.75%
	Time stability	0.2%	No limit
Jet energy res.		Varies with $p_{\rm T}$ and η	Half of Run 2
MET scale		Varies with analysis selection	Half of Run 2
b-Tagging	b-/c-jets (syst.)	Varies with $p_{\rm T}$ and η	Same as Run 2
	light mis-tag (syst.)	Varies with $p_{\rm T}$ and η	Same as Run 2
	b-/c-jets (stat.)	Varies with p_{T} and η	No limit
	light mis-tag (stat.)	Varies with $p_{\rm T}$ and η	No limit
Integrated lumi.		2.5%	1%

Table 1: The sources of systematic uncertainty for which minimum values are applied in S2.

N. De Filippis

Η→γγ

PAS FTR-18-011

Projections for:

• $H \rightarrow \gamma \gamma$ (ggH, VBF, VH, ttH)

two isolated photon candidates passing good quality requirements in the precision regions of the detectors

modeling uncertainty, missing higher order uncertainties causing event migrations between the bins, photon isolation efficiencies and jet uncertainties

Achievable precision @3000 fb⁻¹: less than 10 % (VH dominated by stat uncert.)

H→ZZ→4I

PAS FTR-18-011

Projections for:

• $H \rightarrow ZZ \rightarrow 4I$ (ggH, VBF, VH, ttH)

at least two same-flavor opposite-sign di-lepton pairs, chosen from isolated e and μ candidates passing good quality requirements in acceptance

Dominant systematic uncertainties:

- for ggH: on the lepton reconstruction and identification efficiencies, and pile-up modeling uncertainties.
- for VBF and VH: on the jet energy scale and resolution, and by the missing higher order uncertainties + the parton shower modelling for ttH.

$H \rightarrow bb$ and $H \rightarrow \tau \tau$

PAS FTR-18-011

Projections for:

- VH, H→bb and boosted H→bb
- Leptonic decays of the vector boson for triggering and to reduce the multi-jet background
- Final states: two b-jets and either zero, one or two electrons or muons.

The largest component of the systematic uncertainty is theoretical. This arises from the uncertainty in the gluon-induced ZH ($gg \rightarrow ZH$) production cross section due to QCD scale variations

Projections for:

H→ττ (ggH, VBF)

Three subs-channels $(\tau_{lep}\tau_{lep}, \tau_{lep}\tau_{had})$ and $\tau_{had}\tau_{had}$) are defined by requirements on the number of hadronically decaying τ -leptons candidates and leptons (electrons

The dominant contributions to the systematic uncertainty come from:

- the experimental and background modeling errors
- the uncertainties on jet calibration and resolution, on the reconstruction of the Et^{miss}
- the determination of the background normalization from signal and control region

Rare decays: $H \rightarrow \mu\mu$

- Signature: 2 OS isolated muons, resonant peak at the Higgs mass over a falling background
- **BR(H\rightarrowµµ)=0.022.** Only visible at HL-LHC
- di-muon invariant mass width is reduced in order to match the expected increase in performances due to the upgrade in the tracking system

CMS detector will be able to reach in the best category a di-muon mass resolution down to 0.65%

N. De Filippis

Sept 30 - Oct 4, Higgs couplings 2019

A simultaneous fit in all production modes

Expected precision on the signal strength measurement

Experiment	CMS		
Process	Combination		
Scenario	S 1	S 2	
Total uncertainty	13%	10%	
Statistical uncert.	9%	9%	
Experimental uncert.	8%	2%	
Theory uncer.	5%	3%	

11

Higgs boson cross section

Projections for:

- $H \rightarrow ZZ \rightarrow 4I (ggH, VBF, VH, ttH)$
- $H \rightarrow WW \rightarrow 2I2_{V}$ (ggH, VBF, VH)
- $H \rightarrow \gamma \gamma$ (ggH, VBF, VH, ttH)
- $H \rightarrow \tau \tau$ (qqH, VBF)
- VH, $H \rightarrow bb$ and boosted $H \rightarrow bb$
- $H \rightarrow \mu\mu$ (ggH and VBF)
- ttH, H \rightarrow leptons, H \rightarrow bb + studies about tH

Systematic uncertainties will dominate, in particular theoretical uncertainties on signal and background are the main component for S2 scenario

CMS: S2 uncertainties range from 3–4%, with the exception of that on $\mu^{\mu\mu}$ at 10%.

N. De Filippis

Sept 30 - Oct 4, Higgs couplings 2019

arXiv:1902.00134v1

0.6

Higgs couplings formalism

LHC Higgs Xsection WG

- Single resonance with mass of 125 GeV.
- Zero-width approximation

$$\sigma \cdot B \ (i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

- ➤ the tensor structure of the lagr. is the SM one
 → observed 0⁺
- coupling scale factors K_i are defined in such a way that:
 the cross sections s_i and the partial decay widths G_i scale with K²_i compared to the SM prediction
- ➢ deviations of K_i from unity → new physics BSM
- Results from fits to the data using the profile likelihood ratio with κ_i couplings
 - as parameters of interest or as nuisance parameters

Production modes

$$\frac{\sigma_{ggH}}{\sigma_{ggH}^{SM}} = \begin{cases} \kappa_g^2(\kappa_b, \kappa_t, m_H) \\ \kappa_g^2 \end{cases} \qquad \frac{\Gamma_{WW^{(*)}}}{\Gamma_{WW^{(*)}}^{SM}} = \kappa_W^2 \\
\frac{\sigma_{VBF}}{\sigma_{VBF}^{SM}} = \kappa_{VBF}^2(\kappa_W, \kappa_Z, m_H) \end{cases} \qquad \frac{\Gamma_{ZZ^{(*)}}}{\Gamma_{ZZ^{(*)}}^{SM}} = \kappa_Z^2 \\
\frac{\sigma_{WH}}{\sigma_{WH}^{SM}} = \kappa_Z^2 \\
\frac{\sigma_{ZH}}{\sigma_{ZH}^{SM}} = \kappa_Z^2 \\
\frac{\sigma_{t\bar{t}H}}{\sigma_{t\bar{t}H}^{SM}} = \kappa_t^2 \\
\frac{\sigma_{t\bar{t}H}}{\sigma_{t\bar{t}H}^{SM}} = \kappa_t^2
\end{cases}$$

Higgs boson couplings

- Results for couplings in κ-framework
- Six coupling modifiers corresponding to the tree-level Higgs boson couplings are defined: κ_t, κ_b, κ_τ, κ_μ, κ_W, κ_Z (+ κ_g, κ_γ, κ_{Zγ}) and BR_{BSM} = 0

Uncertainties on the \kappa's 2-5%, apart from k_{\mu} and k_{Z\gamma} mostly limited by statistical theoretical uncertainties

Differential Higgs cross sections

PAS FTR-18-011

Looking at distortions of p_T^H differential distributions as potential new physics may reside in the tails of the distribution, which cannot be measured in inclusive measurements

Combined differential cross sections using:

- $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4I$
- + boosted $H \rightarrow bb$ in the high p_T^H tail

The uncertainties at 3000 fb^{-1:}

- in the higher p_T^H region are about a factor of ten smaller (statistically dominated) w.r.t. S1
- in the lower p_T^H region the reduced systematic uncertainties in S2 yield a reduction in the total uncertainty of up to 25% w.r.t S1 (and are no longer statistically dominated)

N. De Filippis

The Higgs potential

Higgs potential:

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$$
 $\lambda_{hhh} = rac{m_h^2}{2v^2}$

Standard Madal

Why is it

relevant?

Expanding about minimum: $V(\phi) \rightarrow V(v+h)$ $V = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4$ $= V_0 + \frac{1}{2} m_h^2 h^2 + \frac{m_h^2}{2v^2} v h^3 + \frac{1}{4} \frac{m_h^2}{2v^2} h^4$ Higgs mass term *hh*-production *hhh*-production

- the strength of the triple and quartic couplings is fully fixed by the potential shape.
- It has implications on the stability of the Vacuum
- it could make the Higgs boson a good inflation field

N. De Filippis

Double Higgs production

N. De Filippis

Prospects for HH measurements

Search of Higgs boson pair (HH) production and the measurement of the Higgs boson self-coupling (λ_{HHH})

Decay channels: HH \rightarrow bbbb, bb $\tau\tau$, bbWW(\rightarrow IIvv), bb $\gamma\gamma$ (most sensitive), bbZZ(\rightarrow 4I)

Differential XS and constraint on self coupling

Alternative approach: exploiting radiative corrections to inclusive and differential Higgs boson production rates \rightarrow at NLO single Higgs boson production modes include contributions involving the $\lambda_3 \rightarrow$ sizeable contribution from ttH, tH, VH

Focus in ttH (+tH), $H \rightarrow \gamma \gamma$ using Delphes simulation and a strategy similar to the Run2

At 68% C.L.: -1.9<k $_{\lambda}$ <5.3 \rightarrow complementary to the stronger constraints from direct Higgs production

 p_T^H allows to disentangle the effects of modified Higgs boson self-coupling values from other effects such as the presence of anomalous top–Higgs couplings.

PAS FTR-18-020

The dependence of the single-Higgs boson differential xs is parameterised as a function of k_{λ}

Limits on the Higgs width

PAS FTR-18-011

Comparison of on-shell and off-shell rate in $H \rightarrow ZZ \rightarrow 4I$ constrain the Higgs boson width

current constraint: Γ < 9.16 MeV @ 95% CL

Off-peak to on-peak ratio

Systematic uncertainty:

- theoretical uncertainties dominant over experimental ones ← dominant effect comes from the uncertainty in the NLO EW correction on the $qq \rightarrow 4l$ simulation above the 2m_z threshold
- approximate S2 in which the experimental uncertainties not reduced, while the theoretical uncertainties halved w.r.t S1
- 10% additional uncertainty applied on the QCD NNLO K factor on the gg

Precision reachable combining CMS and ATLAS predictions with 3000 fb⁻¹

$$4.1_{-0.8}^{+0.7} \text{ MeV}$$
 @68% C.L

100

N. De Filippis

20

Sensitivity to BSM effects in Higgs physics

Several studies on probing the BSM effects in the Higgs physics :

- Probe for anomalous interactions & rare/exotic decays:
 - H→ invisible
 B_{INV} < 3,8% (compare to 22% @Run2) [FTR-18-016]
 - Exotic/rare/forbidden decays and signatures
 - B_{BSM} < 6% from couplings combination (compare to 34% @Run2) [FTR-18-011]
 - L1T TrackJet for BSM Higgs signatures
 signatures with displaced jets [FTR-18-018]
 - Anomalous couplings and width:
 - significant improvement in limits on anom. coupl.
 Width: Γ_H ⊂ [2,6] MeV @ 95%CL [FTR-18-011]
- Search for additional Higgs bosons and/or scalars :
 - MSSM $H \rightarrow \tau \tau$ search [FTR-18-017]
 - High mass search X→ZZ->2l2q [FTR-18-040)

N. De Filippis

Sept 30 - Oct 4, Higgs couplings 2019

m₄ (GeV)

Summary/Conclusions

HL-LHC: potential for new physics discoveries and precision measurements in the Higgs sector:

- Few per-cent level precision on most Higgs cross sections and couplings
- significance of about 2.6 σ for HH production → triple self coupling
- Higgs width measurable to within 1 MeV
- sensitivity to BSM effects in Higgs physics derived

Many inclusive measurements limited by systematic uncertainties → work needed from theoretical and experimental side

An exciting journey ahead!

N. De Filippis

N. De Filippis

SM Higgs production at the LHC

N. De Filippis

Higgs decay channels

- H(bb) = 57.8%
- H(WW) = 21.4%
- H(gg) = 8.19%
- $H(\tau\tau) = 6.27\%$
- H(ZZ) = 2.62%

- H(cc) = 2.89%
- $H(\gamma\gamma) = 0.23\%$
- $H(Z\gamma) = 0.15 \%$
- $H(\mu\mu) = 0.02\%$

N. De Filippis

Detector performance for Phase 2 upgrade

 $\sqrt{s}=14 \text{ TeV}, < \mu > =200$

ITk Inclined

σ. = 50mm

2%

Pythia8 dijets

20<p.et<40 GeV

pile-up jets

Efficiency

ౖౖం 10⁻¹

10⁻ⁱ

lets

Detector performance after Phase-2 upgrades:

- Effective pileup mitigation
- Overall performance similar or better than during Run 2
- Extended capabilities with new algorithms

Sept 30 - Oct 4, Higgs couplings 2019

MET resolution

√s=14 TeV, <u>=200

PowhegPvthia t ť

ITk Inclined

R_{nT}>0.1

[GeV]

۳

RMS(E^{miss}

100-

80

60

40

20

120 ATLAS Simulation

 \bullet $\eta_{soft track}$ <4.0, $\eta_{R_{-}}$ <4.0

 $h_{soft track} | < 2.7, h_{p} | < 2.7$

ATLAS Simulation

η<1.5

1.5<|n|<2.9 2.9<|η|<3.8

$H \rightarrow WW \rightarrow 2I2v$

Projections for:

• $H \rightarrow WW \rightarrow 2I2_V (ggH, VBF, VH)$

events that contain two opposite-charged isolated leptons passing good quality requirements in the --ecision region of the detectors and missing insverse momentum

The measurement of the ggH cross section by branching fraction is dominated by theoretical PDF uncertainty, followed by experimental uncertainties affecting the signal acceptance, including uncertainties on the jet energy scale and flavour composition, and lepton mis-identification.

Higgs boson cross section

28

Higgs boson branching ratios

For the combined ATLAS-CMS extrapolation

• uncertainty range from 2 to 4%, with the exception of that on $B(\mu\mu)$ at 8% and on $B(Z\gamma)$ at 19%.

Higgs couplings formalism

arXiv:1307.1347v2

Differential Higgs cross sections

Relative uncertainties on the projected p_T H spectrum measurements

					300	00 fb^{-1} A	ATLAS					
$p_{\mathrm{T}}^{\mathrm{H}}$ [GeV]	0-10	10-15 15-20 20-30 30-45 45-60 60-80 80-120 120-200 200-350					350-1000					
$H\to\gamma\gamma$	6.5%	5.9	9%	6.2%	6.0%	6.5%	6.7%	6.0%	5.4%	6.3%	9.5	%
$\mathrm{H} \to \mathrm{ZZ}$	9.0%	8.1%	8.9%	6.9%	6.3%	6.8%	6.8%	6.2%	6.7%	13.2%	24	.3
Combination	5.5%	4.8	3%	5.0%	4.7%	5.0%	5.1%	4.6%	4.4%	5.4%	8.7	%
	$3000 \text{ fb}^{-1} \text{ CMS}$											
$p_{\mathrm{T}}^{\mathrm{H}}$ [GeV]	0-	15	15-30		30-45	45	-80	80-120	120-200	200-350	350-600	<u>600-∞</u>
$H\to\gamma\gamma$	5.	1%	6.8	3%	7.1% (9%	7.1%	6.7%	7.1%	9.9%	32.5%
$H \rightarrow ZZ$	5.4	4%	5.7	7%	5.0%			5.5%			9.6%	
$H \rightarrow bb$						none					38.2%	37.1%
Combination	4.′	7%	4.4	4%	5.0%	4.7	7%	4.8%	4.7%	5.2%	8.5%	25.4%
6000 fb^{-1}												
Combination	4.0)%	3.7	7%	4.0%	3.9	9%	4.0%	4.0%	4.3%	6.3%	18.3%

					300	00 fb^{-1} A	ATLAS						
$p_{\mathrm{T}}{}^{\mathrm{H}}$ [GeV]	0-10	10-15	15-20	15-20 20-30 30-45 45-60 60-80 80-120 120-200 200-350					350-1000				
$H\to\gamma\gamma$	5.3%	4.6	5%	4.9%	4.7% 5.4% 5.7%		4.9%	4.2%	5.1%	8.7%			
$\mathrm{H} \to \mathrm{ZZ}$	8.3%	7.6%	8.3%	6.3%	5.7%	6.2%	6.3%	5.7%	6.4%	13.1%	23.2%		
Combination	4.5%	3.8	3%	3.9%	3.6%	4.1%	4.2%	3.7%	3.5%	4.5%	8.2	8.2%	
					30	$000 {\rm fb}^{-1}$	CMS						
$p_{\mathrm{T}}^{\mathrm{H}}$ [GeV]	0-	15	15	15-30		45-	-80	80-120	120-200	200-350	350-600	<u>600-∞</u>	
$H\to\gamma\gamma$	5.	1%	4.6	4.6% 5.		4.8	3%	4.9%	4.5%	5.1%	8.6%	32.2%	
$H \rightarrow ZZ$	5.4	4%	4.8	8%		4.1%		4.7%			9.1%		
$H \rightarrow bb$						none					31.4%	36.8%	
Combination	3.7	7%	3.3%		4.2%	3.7	7%	4.0%	3.8%	4.4%	8.0%	24.5%	
						6000 fb	-1						
Combination	2.9	9%	2.6	5%	3.2%	2.9	9%	3.0%	2.9%	3.2%	5.8%	17.9%	

S2

S1

N. De Filippis

Higgs boson properties

Projections based on Run-2 combined differential XS (HIG-17-028):

- Channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4I$, boosted $H \rightarrow bb$ (in the high p_T^H tail)
- Constraints on effective kb, kc, kt, cg couplings (competitive with direct probes).

N. De Filippis

Sept 30 - Oct 4, Higgs couplings 2019

Anomalous HVV interactions

Performance to be estimated using the $H \rightarrow 4\ell$ analysis @13 TeV.

 Parameterisation of decay amplitude:

$$=\frac{1}{v}\begin{bmatrix}\mathbf{SM}\\ a_1^{\mathsf{VV}} + \frac{\kappa_1^{\mathsf{VV}}q_1^2 + \kappa_2^{\mathsf{VV}}q_2^2}{\left(\Lambda_1^{\mathsf{VV}}\right)^2} + \frac{\kappa_3^{\mathsf{VV}}(q_1 + q_2)^2}{\left(\Lambda_2^{\mathsf{VV}}\right)^2}\end{bmatrix} \mathbf{m}_{\mathsf{V1}}^2 \epsilon_{\mathsf{V1}}^* \epsilon_{\mathsf{V2}}^* + \underbrace{a_2^{\mathsf{VV}}f_{\mu\nu}^{*(1)}f^{*(2),\mu\nu}}_{\mu\nu} + \underbrace{a_3^{\mathsf{VV}}f_{\mu\nu}^{*(1)}\tilde{f}^{*(2),\mu\nu}}_{\mathbf{M}^{\mathsf{VV}}} + \underbrace{a_3^{\mathsf{VV}}f_{\mu\nu}^{*(1)}\tilde{f}^{*(2),\mu\nu}}_{\mathbf{M}^{$$

Powerful constraints on anomalous couplings:

A

- Exploiting information from:
 - · H decay (on-shell)
 - H on-shell production
 - H off-shell production:
- Sensitivity driven by on-shell production-level info.
 Some model dependance from assumption on HWW/HZZ relation.

Parameter	Information from	95% CL interval		
f _{a3}	decay	±120 · 10-4	Constraints on frac	tional
f _{a3}	decay & production	±1.8 · 10-4	CP-odd presence <	.6 ·10-4
f _{a3}	decay & production & off-shell	±1.6 · 10-4		

HH: CMS and ATLAS combined

	Statistica	al-only	Statistical + Systematic		
	ATLAS	CMS	ATLAS	CMS	
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95	
$HH \rightarrow b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4	
$HH \rightarrow b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8	
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH \to b\bar{b}ZZ(4l)$	-	0.37	-	0.37	
combined	3.5	2.8	3.0	2.6	
	Comb	ined	Combined		
	4.5	5		4.0	

 $\kappa_{\lambda} = \lambda_{\rm HHH} / \lambda_{\rm HHH}^{\rm SM}$

Constraints on the trilinear coupling

N. De Filippis

Sept 30 - Oct 4, Higgs couplings 2019

Constraint on the $\Gamma_{\rm H}$ from H*(126) \rightarrow ZZ

gluon-gluon fusion production

CMS (revenuence)

Off-shell H*(126)→VV (V=W,Z)

- In N. Kauer and G. Passarino, JHEP 08 (2012) 11 it has been shown that the offshell production cross section is sizeable at high ZZ invariant mass
- that comes from a peculiar cancellation between BW trend and Γ(H→VV)
- Enhancement of 7.6% of total cross section in the ZZ final state

	Tot[pb]	$M_{\rm ZZ}>2M_Z[\rm pb]$	R [%]	
$gg \to H \to \text{ all}$	19.146	0.1525	0.8	١
$gg \to H \to ZZ$	0.5462	0.0416	7.6	Ι
-			$\overline{}$	

N. De Filippis

Constraint on the $\Gamma_{\rm H}$ **from** H^{*}(126) \rightarrow ZZ

F. Caola, K. Melnikov (Phys. Rev. D88 (2013) 054024) and

J. Campbell et al. (arXiv:1311.3589)

2 2

showed how this feature can be turned into a constraint on the total Higgs width

$$\frac{d\sigma_{\rm gg\to H\to ZZ}}{dm_{ZZ}^2} \propto g_{\rm ggH}g_{\rm HZZ} \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2\Gamma_{\rm H}^2} \Longrightarrow \sigma_{\rm gg\to H\to ZZ}^{\rm on-peak} \propto \frac{g_{\rm ggH}^2g_{\rm HZZ}^2}{\Gamma_{\rm H}}, \quad \sigma_{\rm gg\to H\to ZZ}^{\rm off-peak} \propto g_{\rm ggH}^2g_{\rm HZZ}^2$$

 \rightarrow so measuring the ratio of $\sigma^{\text{off-peak}}$ and $\sigma^{\text{on-peak}} \rightarrow$ measurement of Γ_{H}

$$\sigma_{gg \to H \to ZZ}^{on-peak} = \frac{\kappa_g^2 \kappa_Z^2}{r} (\sigma \cdot BR)_{SM} \equiv \mu (\sigma \cdot BR)_{SM} \qquad \kappa_g = g_{ggH} / g_{ggH}^{SM} \\ \frac{d\sigma_{gg \to H \to ZZ}^{off-peak}}{dm_{ZZ}} = \kappa_g^2 \kappa_Z^2 \cdot \frac{d\sigma_{gg \to H \to ZZ}^{off-peak,SM}}{dm_{ZZ}} = \mu r \frac{d\sigma_{gg \to H \to ZZ}^{off-peak,SM}}{dm_{ZZ}} \qquad r = \Gamma_H / \Gamma_H^{SM}$$

Once μ is fixed a determination of r is obtained and so for Γ_{H} :

 μ from CMS 4I paper arXiv:1312.5333 and provide result in two ways: μ expected": use expected signal strength

The interference with continuum gg \rightarrow ZZ is taken into account at high mass \rightarrow gg2VV/MCFM VBF production is 10% at high mass \rightarrow PHANTOM

N. De Filippis

Limits on the Higgs width

- Comparison of on- and off-shell rates in H->ZZ->4I can constrain the Higgs boson width. Current constraint: Γ<14.4 MeV (ATLAS), Γ<9.2 MeV (CMS)
- CMS projection: 4.1⁺¹_{-1.1} MeV, ATLAS projection: 4.1^{+1.5}_{-2.1} MeV
 - ATLAS projection based on Run I analysis, used large theoretical uncertainties that have been reduced in the meantime
- Assuming ATLAS analysis would have same sensitivity as CMS analysis at HL-LHC, combined constraint on the width 4.1 ^{+0.7}_{-0.8} MeV

Sensitivity to BSM effects in Higgs physics

Several studies on probing the BSM effects in the Higgs physics :

- Probe for anomalous interactions & rare/exotic decays:
 - H→ invisible
 B_{INV} < 3,8% (compare to 22% @Run2) [FTR-18-016]
 - Exotic/rare/forbidden decays and signatures
 - B_{BSM} < 6% from couplings combination (compare to 34% @Run2) [FTR-18-011]
 - L1T TrackJet for BSM Higgs signatures
 signatures with displaced jets [FTR-18-018]
 - Anomalous couplings and width:
 - significant improvement in limits on anom. coupl.
 Width: Γ_H ⊂ [2,6] MeV @ 95%CL [FTR-18-011]
- Search for additional Higgs bosons and/or scalars :
 - MSSM $H \rightarrow \tau \tau$ search [FTR-18-017]
 - High mass search X→ZZ->2l2q [FTR-18-040)

1000

500

m₄ (GeV)

2000

1500

Sensitivity to BSM effects in Higgs physics

Several studies on probing the BSM effects in the Higgs physics :

- Probe for anomalous interactions & rare/exotic decays:
 - H→ invisible
 B_{INV} < 3,8% (compare to 22% @Run2) [FTR-18-016]
 - Exotic/rare/forbidden decays and signatures
 - B_{BSM} < 6% from couplings combination (compare to 34% @Run2) [FTR-18-011]
 - L1T TrackJet for BSM Higgs signatures
 signatures with displaced jets [FTR-18-018]
 - Anomalous couplings and width:
 - significant improvement in limits on anom. coupl.
 Width: Γ_H ⊂ [2,6] MeV @ 95%CL [FTR-18-011]
- Search for additional Higgs bosons and/or scalars :
 - MSSM $H \rightarrow \tau \tau$ search [FTR-18-017]
 - High mass search X→ZZ->2l2q [FTR-18-040)

1000

500

N. De Filippis

Sept 30 - Oct 4, Higgs couplings 2019

m₄ (GeV)

2000

1500

Higgs to Invisible decays

- Current observed (expected) limits on Binv at 95% CL:
 - ATLAS: < 26% (17%)
 - CMS: < 22% (17%)
- VBF production mode dominates sensitivity → HL-LHC sensitivity studied using Delphes simulation
- With optimised selection: B_{inv}<3.8% at 95% CL with 3000 fb⁻¹ at HL-LHC
- Degradation of E_T^{miss} resolution does not impact the sensitivity significantly
- Combining with previous ATLAS projection of VH channel, and assuming both experiments would perform equally well in both channels: Binv<2.5% at 95% CL

N. De Filippis