On the experimental status of Composite Higgs Models

Charanjit Kaur Khosa

University of Sussex

Work in progress In collaboration with Veronica Sanz

Higgs Couplings 2019, Oxford, UK

Outline

- Composite Higgs (CH)
- Higgs Couplings
- Combined Fit
- Non-minimal CH models
- Summary

Composite Higgs

- Higgs is a pseudo-Nambu Goldstone boson (pNGB) of a spontaneously broken global symmetry
- Effective theory for the pNGB (CCWZ formalism)

 $U = \exp(i\phi^a X^a / f)$

 X^a are the broken generators

• Non-linear transformations

$$U \to gUh^{-1}(g, \phi^a)$$

• One can construct object Σ which has linear transformations

Gauge Couplings

• Kinetic term:

$$\mathscr{L}_{kinetic}^{eff} = \frac{f^2}{4} Tr[D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma]$$

$$\mathscr{L}_{gauge}^{eff} = g^2 f^2 A_{\mu} A^{\mu} \sin^2(H/f)$$

• Expanding around the Higgs VEV: $H \rightarrow H>+h$

$$\mathscr{L}_{gauge} \supset \frac{1}{8} g^2 v^2 W^a_\mu W^{a\mu} + \frac{1}{4} g^2 v \sqrt{1 - \xi} W^a_\mu W^{a\mu} h + \frac{1}{8} g^2 (1 - 2\xi) W^a_\mu W^{a\mu} h^2 ; \quad \xi = v^2 / f^2 W^a_\mu W^{a\mu} h^2 ;$$

$$g_{Whh}^{CH} = \sqrt{1-\xi} g_{WWh}^{SM} \implies \kappa_V = \sqrt{1-\xi} \approx 1 - \frac{1}{2}\xi$$

Fermion Couplings

TABLE I: κ_F in different models.

V. Sanz and J. Setford, Adv. High Energy Phys. (2018) 7168480

κ -Formalism

Channel	Refs.	κ -factors
$ttH \ (H \to \gamma \gamma)$	43 45	$\frac{\kappa_t^2 \kappa_\gamma^2}{\kappa_H^2}$
$ttH \ (H \to b\bar{b})$	43	$\frac{\kappa_t^2 \kappa_b^2}{\kappa_H^2}$
$ttH \ (H \to \tau^+ \tau^-)$	43	$\frac{\kappa_t^2 \kappa_\tau^2}{\kappa_H^2}$
$ttH \ (H \to WW^*, \ H \to ZZ^*)$	43	$\frac{\kappa_t^2 \kappa_V^2}{\kappa_t^2}$
$ggF (H \to \gamma\gamma)$	<u>44</u> , <u>45</u>	$\frac{\kappa_g^2 \kappa_\gamma^2}{\kappa_H}$
$ggF \ (H \to \tau^+ \tau^-)$	46	$\frac{\frac{\kappa_g^2 \kappa_\tau^2}{\kappa_\tau^2}}{\frac{\kappa_g^2}{\kappa_\tau^H}}$
$ggF (H \to WW^*, H \to ZZ^*)$	<u>47-49</u>	$\frac{\kappa_g^2 \kappa_Z^2}{\kappa_H^2}$
$HV \ (H \to b\bar{b})$	50 51	$\frac{\kappa_V^2 \kappa_b^2}{\kappa_H^2}$
$VBF, HV (H \to \gamma \gamma)$	44, 45	$\frac{\kappa_V^2 \kappa_\gamma^2}{\kappa_H}$
$VBF, HV (H \to WW^*, H \to ZZ^*)$	47, 49, 52	$\frac{\kappa_V^4}{\kappa_H^2}$

 $\kappa_g^2 = 1.06\kappa_t^2 + 0.01\kappa_b^2 - 0.07\kappa_b\kappa_t$ $\kappa_\gamma^2 = 1.59\kappa_V^2 + 0.07\kappa_t^2 - 0.66\kappa_V\kappa_t$ $\kappa_H^2 \approx 0.57\kappa_b^2 + 0.25\kappa_V^2 + 0.09\kappa_g^2$

V. Sanz and J. Setford, Adv. High Energy Phys. (2018) 7168480

CMS Run 2 results

	Reference	Channel	Signal Strength
CMS-PAS-HIG-19-001	$137.1 \ {\rm fb}^{-1}$	ggH, $H \to ZZ$	$0.97^{+0.13}_{-0.11}$
		VBF, $H \to ZZ$	$0.64_{-0.37}^{+0.48}$
		VH, $H \to ZZ$	$1.15\substack{+0.93\\-0.74}$
		$t\bar{t}H, tH, \ H \to ZZ$	$0.13\substack{+0.93\\-0.13}$
CMS-PAS-HIG-18-029	$77.4 { m ~fb^{-1}}$	ggF, $H \rightarrow \gamma \gamma$	$1.15^{+0.15}_{-0.15}$
		VBF, $H \to \gamma \gamma$	$0.8^{+0.4}_{-0.3}$
JHEP 1811 (2018) 185	35.9 fb^{-1}	VH, $H \to \gamma \gamma$	$2.4^{+1.1}_{-1.0}$
CMS-PAS-HIG-18-018	(35.9 + 41.5)fb ⁻¹	$t\bar{t}H, H \to \gamma\gamma$	$1.7^{+0.6}_{-0.5}$
arXiv:1806.05246	35.9 fb^{-1}	ggF, $H \to WW$	$1.38^{+0.21}_{-0.24}$
		VBF, $H \to WW$	$0.29^{+0.66}_{-0.29}$
		WH, $H \to WW$	$3.27^{+1.88}_{-1.70}$
		$ZH, H \to WW$	$1.00^{+1.57}_{-1.00}$
Phys. Rev. Lett 121 (2018),021801	$5.1 \text{ fb}^{-1}(7 \text{TeV})$	VH, $H \to bb$	1.01 ± 0.22
	$+18.9 { m ~fb^{-1}(8TeV)}$	ggF, $H \rightarrow bb_{_}$	2.80 ± 2.45
	$+77.2 {\rm fb}^{-1}(13 { m TeV})$	VBF, $H \to b\bar{b}$	2.53 ± 1.53
		$ttH, H \to bb$	0.85 ± 0.44
CMS-PAS-HIG-18-032	77.4 fb^{-1}	gg \rightarrow H, bbH, $H \rightarrow \tau \bar{\tau}$	$0.36^{+0.36}_{-0.37}$
		$VBF+V(qq)H, H \to \tau\bar{\tau}$	$1.03^{+0.30}_{-0.29}$
CMS-PAS-HIG-18-019	$35.9 + 41.5 \text{fb}^{-1}$	$ttH, H \to ML$	$0.96^{+0.34}_{-0.31}$
Phys. ReV. Lett. 122 (2019), 021801	$5.0 \text{ fb}^{-1}(7 \text{TeV})$	$pp, H \to \mu\mu$	1.0 ± 1.0
	$+19.8 \text{ fb}^{-1}(8\text{TeV})$		
	$+35.9 \text{ fb}^{-1}(13 \text{ TeV})$		

ATLAS Run2 results

ATLAS Preliminary	Stat.		Syst.	I SM
$\sqrt{s} = 13 \text{ TeV}, 24.5 - 79.8 \text{ fb}^{-1}$			5	
$p_{H} = 71\%$		Total	Stat	Svet
	0.06			+ 0.09
	1.04	± 0.14 (+0.16 (± 0.11,	- 0.08)
	1.04	-0.15 (±0.14,	± 0.06)
	0.00	± 0.19 (+ 0.59 (±0.11,+0.37	± 0.15) + 0.46 \
	1.96	- 0.52 (- 0.36 ,	- 0.38) + 0.07)
	1.04	± 0.09 (+ 0.40 (± 0.07 , + 0.31	(-0.06)
	1.39	- 0.35(+ 0.98(-0.30, +0.94	-0.19) +0.27)
	2.68	-0.83 (- 0.81 ,	- 0.20)
	0.59	+0.35 (- 0.27 ,	± 0.21) + 0.40、
	1.16	+0.50 (-0.53 (- 0.40 ,	(-0.35)
	3.01	- 1.61	- 1.57 v	(-0.36)
VBF comb.	1.21	$+0.24 \\ -0.22 ($	+0.18	(-0.13)
VH γγ ι	1.09	+0.58 -0.54	+ 0.53	+0.25 -0.22)
	0.68	+1.20 -0.78 (+ 1.18 - 0.77,	+0.18)
VH bb	1.19	+0.27 -0.25 (+0.18 -0.17,	+ 0.20 - 0.18)
VH comb.	1.15	+0.24 -0.22 ($\pm \ 0.16$,	+0.17 -0.16)
ttH+tH γγ 📫 📮	1.10	+0.41 -0.35 (+0.36 -0.33,	+0.19 -0.14)
ttH+tH VV H	1.50	+ 0.59 - 0.57 (+0.43 -0.42,	+0.41 -0.38)
<i>ttH+tH</i> ττ μ	1.38	+1.13 -0.96 (+0.84 -0.76,	+0.75 -0.59)
ttH+tH bb	0.79	+ 0.60 - 0.59 (±0.29,	±0.52)
ttH+tH comb.	1.21	+0.26 -0.24 ($\pm \; 0.17$,	+0.20 -0.18)
· · · · /		6		Q
		U		U

ATLAS-CONF-2019-005

LHC Run1+2

Run 1 data is taken from the combined CMS and ATLAS analysis, JHEP 1608 (2016) 045

$$\chi^{2}(f) = \sum_{i}^{Run1,Run2} \left(\frac{\mu_{i}(\kappa(f))^{CH} - \mu_{i}^{Exp}}{\Delta \mu_{i}} \right)^{2}$$

The different lines correspond to different choice of fermion couplings $\kappa_F^{A/B}$ for

 $(\kappa_t, \kappa_b, \kappa_\tau)$

Extra singlet: Tree Level Effects

$$\kappa_{V} = \cos\theta\sqrt{1-\xi} \approx 1 - \frac{1}{2}\xi - \frac{1}{2}\theta^{2}$$

$$\cos\theta = \cos\left(\lambda\left(\frac{v_{s}}{v}\right)\left(\frac{v^{2}}{m_{s}^{2}}\right)\right)$$

$$\kappa_{F}^{A} = \cos\theta\sqrt{1-\xi} \approx 1 - \frac{1}{2}\xi - \frac{1}{2}\theta^{2}$$

$$0.98$$

$$0.99$$

$$0.96$$

$$0.96$$

$$1000$$

$$1500$$

$$2000$$

$$2500$$

$$f_{min}(\text{GeV})$$

Two Higgs Doublet model

Top Partners

CMS, Zt, Phys. Lett. B 781 (2018) 574

A.Banfi, A.Martin and V.Sanz, JHEP 1408 (2014) 053

Summary

- We provide the status of composite Higgs models with latest Run 2 LHC data
- Generic modifications for the fermion and gauge boson couplings
- Bound on the new physics scale f from the data
- The sensitivity of the bound on mixing angle with other Higgs in case of singlet and doublet mixing
- Calculation of a bound on the top partner masses and mixing angle from Higgs + jets is in progress

Thanks

V. Sanz and J. Setford, Adv. High Energy Phys. (2018) 7168480

Production	Channel	Signal Strength
ggF	$\gamma\gamma$	0.96 ± 0.14
	ZZ	$1.04^{+0.16}_{-0.15}$
	WW	1.08 ± 0.19
	au au	$0.96\substack{+0.59 \\ -0.52}$
VBF	$\gamma\gamma$	$1.39^{+0.40}_{-0.35}$
	ZZ	$2.68^{+0.98}_{-0.83}$
	WW	$0.59^{+0.36}_{-0.35}$
	$\tau \tau$	$1.16_{-0.53}^{+0.58}$
	bb	$3.01^{+1.67}_{-1.61}$
VH	$\gamma\gamma$	$1.09^{+0.58}_{-0.54}$
	ZZ	$0.68^{+1.20}_{-0.78}$
	bb	$1.19^{+0.27}_{-0.25}$
	WW	$2.5^{+0.9}_{-0.8}$
ttH + tH	$\gamma\gamma$	$1.10^{+0.41}_{-0.35}$
	VV	$1.50^{+0.59}_{-0.57}$
	au au	$1.38^{+1.13}_{-0.96}$
	bb	$0.79^{+0.60}_{-0.59}$