Higgs Boson Pair Production via Gluon Fusion: NLO QCD Corrections

Higgs Couplings 2019, Oxford

Seraina Glaus Institut für Theoretische Physik, Institut für Kernphysik KIT

Seraina Glaus

 $\kappa_F \frac{m_F}{V} \text{ or } \sqrt{\kappa_V \frac{m_V}{V}}$

10-

10-2

10⁻³

 10^{-4}

10-1

Higgs Couplings 2019, Oxford, 2.10.2019

Motivation

Detection of a Higgs boson with a mass ~ 125 GeV

ATLAS+CMS SM Higgs boson

Particle mass [GeV]

 10^{2}

[M, ε] fit 68% CL 95% CL

10

- Higgs mass, coupling strengths, spin and CP already determined
- Self-coupling strength still unknown

ATLAS and CMS LHC Run 1

1

$$\lambda_{h^3} = 3\frac{m_h^2}{v}$$

$$\lambda_{h^4} = 3 \frac{m_h^2}{v^2}$$

Higgs boson pair production

Production channels

Cross sections

HH White Paper

Motivation

Uncertainties:

Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira

 $\sigma_{\rm NLO}(pp \to HH + X) = \sigma_{\rm LO} + \Delta\sigma_{\rm virt} + \Delta\sigma_{gg} + \Delta\sigma_{gq} + \Delta\sigma_{q\bar{q}},$

Current Status

- Virtual & real (N)NLO QCD corrections in large top mass limit (HTL): ~100%
 Dawson,Dittmaier,Spira de Florian,Mazzitelli
- Large top mass expansion: ~ ±10%
- NLO mass effects of the real NLO correction alone ~ -10 %
- NLO QCD corrections including the full top mass dependence:
 - 15 % NLO mass effects
- New expansion/extrapolation methods:
 - $1/m_t^2$ expansion & conformal mapping & Padé approximants
 - p_T^2 expansion
 - high-energy

Grigo,Melnikov,Steinhauser

Grigo, Hoff, Melnikov, Steinhauser

Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke Baglio,Campanario,SG,Mühlleitner, Spira,Streicher

Gröber,Maier,Rauh Bonciani,Degrassi,Giardino,Gröber

Davies, Mishima, Steinhauser, Wellmann

Virtual Corrections

Triangular diagrams

- Use existing results of single Higgs calculation

One-particle reducible diagrams

– Use existing results of $\,H
ightarrow Z \gamma$

Box diagrams

- Treat every diagram individually (no reduction to master integrals)
- Extract the ultraviolet divergences of the matrix elements using endpoint subtractions
- Extract the infrared and collinear divergences using a 'proper' subtraction of the integrand
- Integration by parts due to numerical instabilities above the thresholds where $m_{hh}^2 > 0$, $m_{hh}^2 > 4m_t^2 \Rightarrow m_t^2 \to m_t^2(1 - i\bar{\epsilon})$ with $\bar{\epsilon} \ll 1$

Total virtual corrections

- Numerical evaluation using Vegas (P. Lepage)

$$Q^2 \frac{d\Delta \sigma_{virt}}{dQ^2} = \tau \frac{d\mathcal{L}^{gg}}{d\tau} \hat{\sigma}_{virt}(Q^2) \big|_{\tau = \frac{Q^2}{s}}$$

 $\frac{\mathrm{d}\mathcal{L}^{gg}}{\mathrm{d}\tau} = \text{gluon luminosity}$

 $\hat{\sigma}_{virt} =$ virtual part of the partonic cross section

 $(Q^2 = m_{HH}^2)$

- Renormalization: α_s in \overline{MS} with $N_F = 5$ and m_t on shell (central value)
- Subtraction of HTL → IR finite top mass effects
- Numerical instabilities due to the small imaginary parts of the top mass: *Richardson extrapolation*

Real corrections

- Full matrix elements generated with FeynArts and FormCalc
- Matrix element in the HTL (massive LO) subtracted → IR finite top mass effects

Differential cross section

K-factor

$$K = \frac{\sigma_{\rm NLO}}{\sigma_{\rm LO}}$$

Total hadronic cross section

Energy	m _t = 173 GeV	m _t = 172.5 GeV
13 TeV	$27.80(9)^{+13.8\%}_{-12.8\%}$ fb	$27.73(7)^{+13.8\%}_{-12.8\%}$ fb
14 TeV	$32.91(10)^{+13.6\%}_{-12.6\%}$ fb	$32.78(7)^{+13.5\%}_{-12.5\%}$ fb
27 TeV	$127.7(2)^{+11.5\%}_{-10.4\%}$ fb	$127.0(2)^{+11.7\%}_{-10.7\%}$ fb
100 TeV	$1149(2)^{+10.8\%}_{-10.0\%}$ fb	$1140(2)^{+10.7\%}_{-10.0\%}$ fb

HH White Paper (to appear soon)

Factorisation / renormalisation scale dependence

varying both scales by a factor of two around central value of $\mu_F = \mu_R = m_{hh}/2$

Differential cross section:

Total cross section:

$$\sigma(gg \to HH) = 32.78(7)^{+13.5\%}_{-12.5\%}$$
 (PDF4LHC15)

$$(\sqrt{s} = 14 \,\mathrm{TeV})$$

Baglio, Campanario, G, Mühlleitner, Spira, Streicher: 1811.05692

Uncertainty due to mt: differential cross section

- uncertainty related to the scheme and scale choice of the top mass
- calculated the total NLO results for the differential cross section for the \overline{MS} top mass at different scale choices
- $\rightarrow \overline{MS}$ top mass scale in the range [Q/4,Q], m_t

$$\frac{d\sigma(gg \to HH)}{dQ}\Big|_{Q=300 \,\text{GeV}} = 0.02978(7)^{+6\%}_{-34\%} \,\text{fb/GeV}$$
$$\frac{d\sigma(gg \to HH)}{dQ}\Big|_{Q=400 \,\text{GeV}} = 0.1609(4)^{+0\%}_{-13\%} \,\text{fb/GeV}$$
$$\frac{d\sigma(gg \to HH)}{dQ}\Big|_{Q=600 \,\text{GeV}} = 0.03204(9)^{+0\%}_{-30\%} \,\text{fb/GeV}$$
$$\frac{d\sigma(gg \to HH)}{dQ}\Big|_{Q=1200 \,\text{GeV}} = 0.000435(4)^{+0\%}_{-35\%} \,\text{fb/GeV}$$

 $(\sqrt{s} = 14 \,\mathrm{TeV})$

Uncertainty due to mt: total hadronic cross section

Take for individual Q values the maximum / minimum differential cross section and integrate

$$\sigma(gg \to HH) = 32.78(7)^{+4.0\%}_{-17\%}$$

with PDF4LHC15

- Calculation of two-loop integral with three free parameter ratios
- NLO top mass effects of ~ -15% compared to HTL result
- Factorisation / renormalisation scale dependence: ~ 15% uncertainties
- Top mass scheme and scale uncertainties: $\leq 30\%$ (differential) total cross section at 14 TeV: $\sigma(gg \rightarrow HH) = 32.78(7)^{+4.0\%}_{-17\%}$

BACK-UP

Top mass uncertainty

NNLO

Spira, Djouadi, Graudenz, Zerwas

NLO Corrections

$$\sigma_{\rm NLO}(pp \to HH + X) = \sigma_{\rm LO} + \Delta\sigma_{\rm virt} + \Delta\sigma_{gg} + \Delta\sigma_{gq} + \Delta\sigma_{q\bar{q}},$$

$$\begin{split} \sigma_{\text{LO}} &= \int_{\tau_0}^{1} d\tau \; \frac{d\mathcal{L}^{gg}}{d\tau} \; \hat{\sigma}_{\text{LO}}(Q^2 = \tau s) \\ \Delta \sigma_{\text{virt}} &= \frac{\alpha_s(\mu)}{\pi} \int_{\tau_0}^{1} d\tau \; \frac{d\mathcal{L}^{gg}}{d\tau} \; \hat{\sigma}_{\text{LO}}(Q^2 = \tau s) \; C \\ \Delta \sigma_{gg} &= \frac{\alpha_s(\mu)}{\pi} \int_{\tau_0}^{1} d\tau \; \frac{d\mathcal{L}^{gg}}{d\tau} \int_{\tau_0/\tau}^{1} \frac{dz}{z} \; \hat{\sigma}_{\text{LO}}(Q^2 = z\tau s) \left\{ -z P_{gg}(z) \log \frac{M^2}{\tau s} \right. \\ &+ d_{gg}(z) + 6[1 + z^4 + (1 - z)^4] \left(\frac{\log(1 - z)}{1 - z} \right)_+ \right\} \\ \Delta \sigma_{gq} &= \frac{\alpha_s(\mu)}{\pi} \int_{\tau_0}^{1} d\tau \sum_{q,\bar{q}} \frac{d\mathcal{L}^{gq}}{d\tau} \int_{\tau_0/\tau}^{1} \frac{dz}{z} \; \hat{\sigma}_{\text{LO}}(Q^2 = z\tau s) \left\{ -\frac{z}{2} P_{gq}(z) \log \frac{M^2}{\tau s(1 - z)^2} \right. \\ &+ d_{gq}(z) \\ \left. + d_{gq}(z) \right\} \\ \Delta \sigma_{q\bar{q}} &= \frac{\alpha_s(\mu)}{\pi} \int_{\tau_0}^{1} d\tau \sum_{q} \frac{d\mathcal{L}^{q\bar{q}}}{d\tau} \int_{\tau_0/\tau}^{1} \frac{dz}{z} \; \hat{\sigma}_{\text{LO}}(Q^2 = z\tau s) \; d_{q\bar{q}}(z) \\ C \to \pi^2 + \frac{11}{2} + C_{\Delta\Delta}, \qquad d_{gg} \to -\frac{11}{2}(1 - z)^3, \qquad d_{gq} \to \frac{2}{3}z^2 - (1 - z)^2, \qquad d_{q\bar{q}} \to \frac{32}{27}(1 - z)^3 \end{split}$$

Higgs Days 2019, Santander, 17.09.2019

Virtual Corrections

47 two-loop **box diagrams** + 8 triangular diagrams + 2 one-particle reducible diagrams

Triangular Diagrams

single Higgs case

One-particle reducible diagrams \longrightarrow analytical results for $C_{\Delta\Delta}$ $(H \rightarrow Z\gamma)$ see e.g. Degrassi, Giardino, Gröber

Box diagrams

- Generate matrix element form factors for all possible diagrams using Feynman rules (by hand → Reduce, Mathematica, Form)
- Perform Feynman parametrisation \rightarrow additional 6-dimensional integrals
- Extract the ultraviolet divergences of the matrix elements using endpoint subtractions of the 6-dimensional Feynman integrals

$$\int_0^1 dx \ \frac{f(x)}{(1-x)^{1-\epsilon}} = \int_0^1 dx \ \frac{f(1)}{(1-x)^{1-\epsilon}} + \int_0^1 dx \ \frac{f(x) - f(1)}{(1-x)^{1-\epsilon}} = \frac{f(1)}{\epsilon} + \int_0^1 dx \ \frac{f(x) - f(1)}{1-x} + \mathcal{O}(\epsilon)$$

- Extract the infrared and collinear divergences using a 'proper' subtraction of the integrand (based on HTL calculation)
- Integration by parts due to numerical instabilities at the thresholds

$$m_{hh}^2 > 4m_t^2 \Rightarrow m_t^2 \to m_t^2(1-i\bar{\epsilon})$$
 with $\bar{\epsilon} \ll 1$

$$\int_0^1 dx \, \frac{f(x)}{(a+bx)^3} = \frac{f(0)}{2a^2b} - \frac{f(1)}{2b(a+b)^2} + \int_0^1 dx \, \frac{f'(x)}{2b(a+bx)^2}$$

Virtual Corrections

Differential cross section

$$Q^2 \frac{d\Delta\sigma_{virt}}{dQ^2} = \tau \frac{d\mathcal{L}^{gg}}{d\tau} \hat{\sigma}_{virt}(Q^2) \big|_{\tau = \frac{Q^2}{s}} \qquad (Q^2 = m_{HH}^2)$$

$$\frac{\mathrm{d}\mathcal{L}^{gg}}{\mathrm{d}\tau} = \text{gluon luminosity}$$

 $\hat{\sigma}_{virt} = \text{virtual part of the partonic cross section}$

- → 7 dimensional integrals (6 Feynman and one phase space integration)
- → use Vegas for numerical integration (P. Lepage)
- numerical instabilities due to the small imaginary parts of the top mass above the thresholds: Richardson extrapolation

Renormalisation

 $lpha_s$ and m_t need to be renormalised

 $\rightarrow \alpha_s \text{ in } \overline{MS} \text{ with } N_F = 5$

 \rightarrow m_t on shell (\rightarrow central prediction)

$$\delta\sigma = \delta\alpha_s \frac{\delta\sigma_{LO}}{\delta\alpha_s} + \delta m_t \frac{\delta\sigma_{LO}}{\delta m_t}$$

Subtraction of the heavy-top limit --> virtual mass effects only (infrared finite)

$$\Delta C_{mass} = C^0 - C^0_{HTL}$$

Adding back the results in the heavy-top limit (HPAIR)

$$C = C_{HTL} + \Delta C_{mass}$$

Box diagrams

- Generate matrix element form factors for all possible diagrams using Feynman rules (by hand → Reduce, Mathematica)
- Use dimensional regularisation: $D = 4 2\epsilon$
- Perform Feynman parametrisation → additional 6-dimensional integrals

$$\frac{1}{A_1^{\alpha_1}\cdots A_n^{\alpha_n}} = \frac{\Gamma(\alpha_1+\ldots+\alpha_n)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_n)} \int_0^1 du_1 \int_0^{1-u_1} du_2 \cdots \int_0^{1-u_1-\ldots-u_{n-2}} du_{n-1} \frac{u_1^{\alpha_1-1}\cdots u_{n-1}^{\alpha_{n-1}}(1-u_1-\ldots-u_{n-1})^{\alpha_n-1}}{[u_1A_1+\ldots+u_{n-1}A_{n-1}+(1-u_1-\ldots-u_{n-1})A_n]^{\alpha_1+\ldots+\alpha_n}},$$

- Substitution to obtain integrals from 0 to 1
- Evaluating momentum integrals using:

$$\int \frac{d^D k}{(2\pi)^D} \frac{1}{(k^2 - M^2 + i\epsilon)^N} = i \frac{(-1)^N}{(4\pi)^{D/2}} \frac{\Gamma(N - \frac{D}{2})}{\Gamma(N)} \frac{1}{(M^2 - i\epsilon)^{N - \frac{D}{2}}}$$

$$\int \frac{d^D k}{(2\pi)^D} \frac{k_\mu k_\nu}{(k^2 - M^2 + i\epsilon)^N} = \frac{i}{2} \frac{(-1)^{N-1}}{(4\pi)^{D/2}} \frac{\Gamma(N - 1 - \frac{D}{2})}{\Gamma(N)} \frac{g_{\mu\nu}}{(M^2 - i\epsilon)^{N-1 - \frac{D}{2}}} \quad \text{etc.}$$

Virtual Corrections

Divergences

- Integration by parts due to numerical instabilities at the thresholds

 $m^2_{hh} > 4m^2_t \Rightarrow m^2_t \to m^2_t (1 - i\overline{\epsilon})$ with $\overline{\epsilon} \ll 1$

$$\int_0^1 dx \, \frac{f(x)}{(a+bx)^3} = \frac{f(0)}{2a^2b} - \frac{f(1)}{2b(a+b)^2} + \int_0^1 dx \, \frac{f'(x)}{2b(a+bx)^2}$$

(more involved for second order polynomials)

further integration by parts not successful since new divergences are created (investigated further)

Virtual Corrections

Divergences

 Extract the ultraviolet divergences of the matrix elements using endpoint subtractions of the 6-dimensional Feynman integrals

$$\int_0^1 dx \, \frac{f(x)}{(1-x)^{1-\epsilon}} = \int_0^1 dx \, \frac{f(1)}{(1-x)^{1-\epsilon}} + \int_0^1 dx \, \frac{f(x) - f(1)}{(1-x)^{1-\epsilon}}$$
$$= \frac{f(1)}{\epsilon} + \int_0^1 dx \, \frac{f(x) - f(1)}{1-x} + \mathcal{O}(\epsilon)$$

 Extract the infrared and collinear divergences using a proper subtraction of the integrand

 $\begin{aligned} \text{denominator:} \ N &= ar^2 + br + c & a = \mathcal{O}(\rho) & \rho_s = \frac{\dot{s}}{m_Q^2} \\ N_0 &= br + c & b = 1 + \mathcal{O}(\rho) \\ c &= -\rho_s x (1 - x)(1 - s)t \end{aligned}$ $\int_0^1 d\vec{x} dr \frac{rH(\vec{x}, r)}{N^{3+2\epsilon}} &= \int_0^1 d\vec{x} dr \Big\{ \Big(\frac{rH(\vec{x}, r)}{N^{3+2\epsilon}} - \frac{rH(\vec{x}, 0)}{N_0^{3+2\epsilon}} \Big) + \frac{rH(\vec{x}, 0)}{N_0^{3+2\epsilon}} \Big\} \end{aligned}$

Taylor expansion in ϵ

analytical r-integration

f(x) polynomial for small h

Richardson extrapolation

→ sequence acceleration method to obtain a better convergence behaviour

f(x)

h 2h

4h

8h

Approximation polynomial

$$M_{i+1}(h) = \frac{t^{k_i} M_i(\frac{h}{t}) - M_i(h)}{t^{k_i} - 1}$$

h and h/t the two step sizes and k_i the truncation error

Theoretical error from Richardson extrapolation estimated by the difference of the fifth and the

Numerical Instabilities

1. due to phase-space integration over Mandelstam variable t

 \rightarrow cut-off at $t = 10^{-8}$ for individual diagrams (total sum finite)

→ logarithmic substitution with $y = \log \frac{t - t_{-}}{m_{+}^2}$

2. due to the small imaginary parts $\overline{\epsilon}$ of the top mass above the thresholds, where $m_t^2 \rightarrow m_t^2(1 - i\overline{\epsilon})$ need value in narrow width approximation where $\overline{\epsilon} \rightarrow 0$ calculate partonic cross section for different $\overline{\epsilon} \rightarrow \mathbb{R}$ ichardson extrapolation

Results

K-factor distribution

$$K = \frac{\sigma_{\rm NLO}}{\sigma_{\rm LO}}$$

Triangular contributions

Box contributions

Results

Triangular contributions

Box contributions

Results

Uncertainty due to mt for single Higgs

 $\rightarrow \overline{MS}$ top mass in the range [Q/4,Q]

$$\begin{split} \sigma(gg \to H) \big|_{m_H = 125 \,\text{GeV}} &= 42.17^{+0.4\%}_{-0.5\%} \,\text{pb} \\ \sigma(gg \to H) \big|_{m_H = 300 \,\text{GeV}} &= 9.85^{+7.5\%}_{-0.3\%} \,\text{pb} \\ \sigma(gg \to H) \big|_{m_H = 400 \,\text{GeV}} &= 9.43^{+0.1\%}_{-0.9\%} \,\text{pb} \\ \sigma(gg \to H) \big|_{m_H = 600 \,\text{GeV}} &= 1.97^{+0.0\%}_{-15.9\%} \,\text{pb} \\ \sigma(gg \to H) \big|_{m_H = 900 \,\text{GeV}} &= 0.230^{+0.0\%}_{-22.3\%} \,\text{pb} \\ \sigma(gg \to H) \big|_{m_H = 1200 \,\text{GeV}} &= 0.0402^{+0.0\%}_{-26.0\%} \,\text{pb} \end{split}$$

resummation for large ${\boldsymbol{Q}}$

• Abelian logs (C_F): $H \rightarrow \gamma \gamma$

Kotsky, Yakovlev, PLB 418 (1998) 335 (LL) Akhoury, Wang, Yakovlev, PRD 64 (2001) 113008 (NLL)

• non-Abelian logs (C_A): LL related to IR singularities \rightarrow exponentiate

Liu, Penin, PRL 119 (2017) no.26, 262001; JHEP 1811 (2018) 158

- non-Abelian NLL?
- remainder (NNLL)?
- boxes? (more scales)

 \bullet threshold: $\mathcal P\text{-wave}$ QCD potential \rightarrow Coulomb singularities

- matrix element $\propto \beta^2$, phase space $\propto \beta$ imaginary part $\propto \beta^3$ @ LO
- Coulomb singularity at each order in imaginary part:

$$C_{Coul} = \frac{Z}{1 - e^{-Z}} = 1 + \frac{Z}{2} + \cdots \text{ with } Z = C_F \frac{\pi \alpha_s}{\beta}$$

⇒ step in imaginary part @ N³LO ⇒ log. sing. in real part @ N³LO (← dispersion integral)

 solution: non-relativistic Green-function in threshold range [real part renormalized, finite top width]

Melnikov, S., Yakovlev, ZPC 64 (1994) 401

remainder?