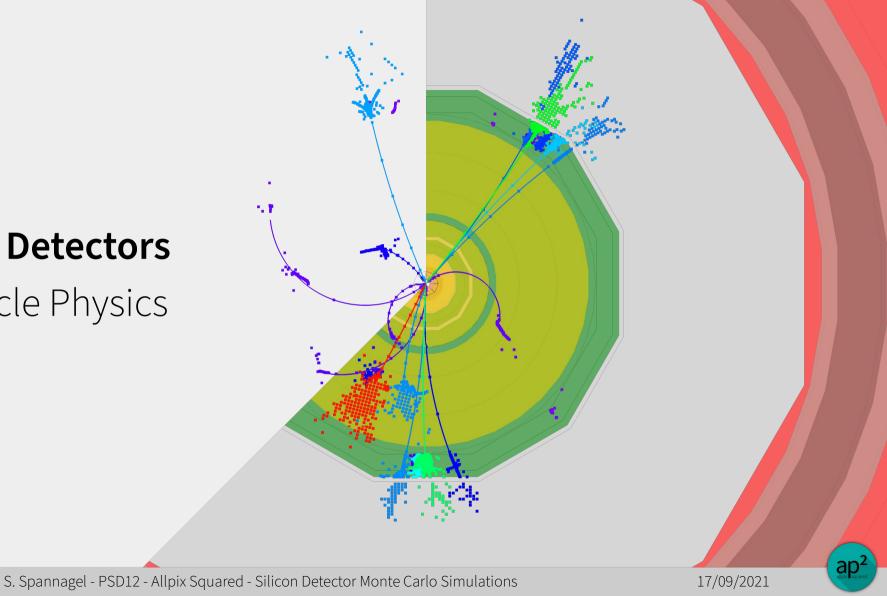


cern.ch/allpix-squared

#### **Allpix Squared**


Silicon Detector Monte Carlo Simulations for Particle Physics and Beyond

#### Simon Spannagel, DESY

12th International Conference on Position Sensitive Detectors 17 September 2021

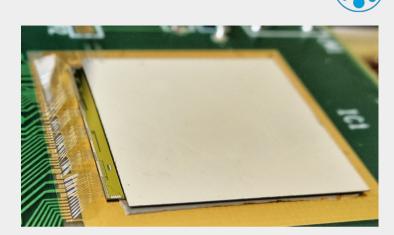
#### **Silicon Detectors**

#### in Particle Physics



## Silicon Detectors in Particle Physics

Demands on detectors are high:


- Very high particle flux, tens of MHz / cm<sup>2</sup>
- Maximum resolution, minimum (scattering-) mass
- Very high granularity for high particle rates, fast readout, minimal dead time (few ns)
- "Smart" detectors (zero suppression, clustering, on-chip processing, fast data links)

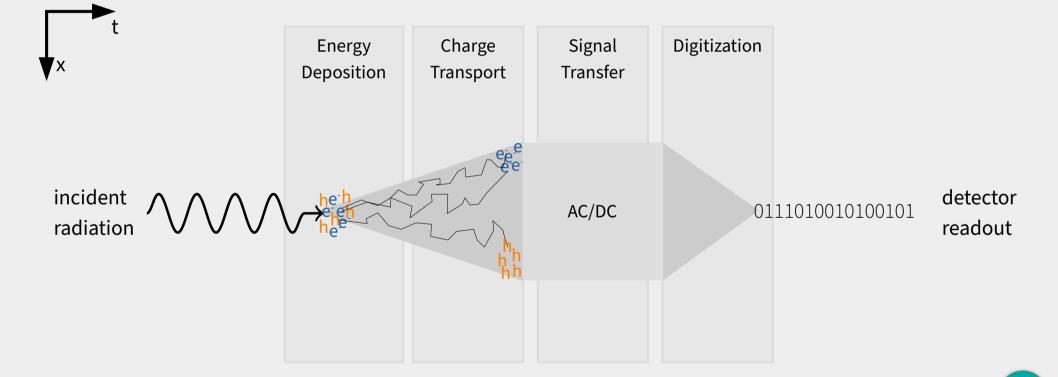
Many different technologies used for different purposes:

hybrid – dedicated sensor + mixed-mode CMOS, monolithic CMOS imaging, LGADs, 3D sensors, ...

- Simulations required for thoroughly understanding detector performance in realistic conditions
- Tools needed to cover wide range of detector technologies










#### Minimum Ionizing Particle Detector – Broken Down



ap







# The Allpix Squared Framework

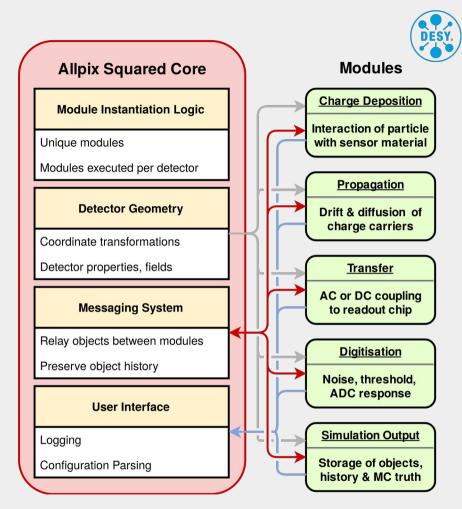
#### for Silicon Detector Monte Carlo Simulations

B = 3.8 T

17/09/2021



S. Spannagel - PSD12 - Allpix Squared - Silicon Detector Monte Carlo Simulations


## The Allpix<sup>2</sup> Framework

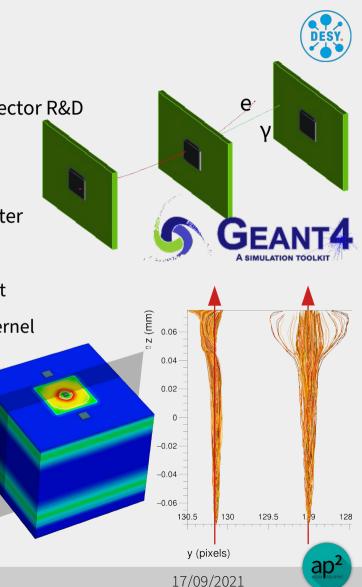
• Proliferation of many different codes for detector simulation:

Experiment-specific, specialized on specific detectors, written as part of a PhD thesis, abandoned afterwards

- Wanted: flexible MC simulation software with...
  - I. Integration of Existing Toolkits
  - II. Well-Tested & Validated Algorithms
  - III. Low Entry Barrier for New Users
  - IV. Clean & Maintainable Code



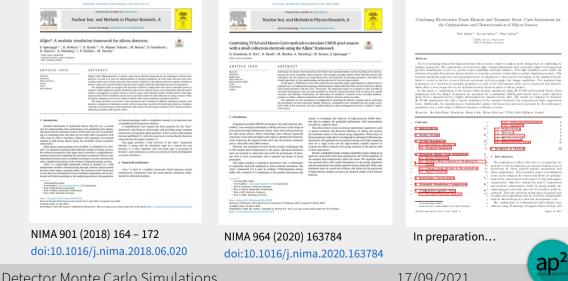


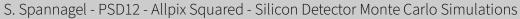

NIMA 901 (2018) 164 - 172

17/09/2021

doi:10.1016/j.nima.2018.06.020

# I. Integration of Existing Toolkits

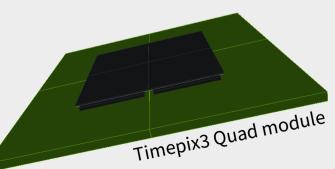

- Many very powerful tools developed and employed over decades of detector R&D Leverage their capabilities by providing interfaces for their integration
- Geant4 simulating energy deposition of particles passing through matter
  - Extensive toolkit, detailed simulation of many interactions & processes
  - Cumbersome to use for beginners, complexity often overwhelming at first
  - Provide abstraction layer that auto-generates models and calls Geant4 kernel
- TCAD solving Poisson's equation using doping information
  - Detailed understanding of field configuration, sensor behavior
  - Tools & knowledge widely spread in community
  - Provide possibility to import results to complement MC simulations




### II. Well-Tested & Validated Algorithms

- Simulations provide insights into physical processes but only if they model them correctly! • Validation of algorithms is a crucial and time-consuming process
- With Allpix Squared, we strive for •
  - Validating as much as possible against known data
  - Publishing reference studies including full simulation configuration used
  - Providing automated tests for every new feature
- User workshops for exchange of the ٠ community, discussions, planning...

9








### III. Low Entry Barrier for New Users

- Simulation frameworks often very complex: code complexity, lack of documentation, physics
- Allpix Squared attempts to facilitate quick starts:
  - Extensive documentation / user manual / help forum
  - Human-readable configuration files
  - Support for physical units
  - No coding or code-reading required
- Successfully used e.g. in university education, summer schools, ...



```
1 [AllPix]
2 log_level = "INFO"
3 number_of_events = 500000
4 detectors_file = "telescope.conf"
5
```

[GeometryBuilderGeant4]

world material = "air"



Allpix<sup>2</sup> User Manual

Paul Schütze (paul.schuetze@desy.de)

July 9, 2021 Version v2 0 1

non Spannagel (simon.spannagel@cern.ch Koen Wolters (koen.wolters@cern.ch)

```
[DepositionGeant4]
physics_list = FTFP_BERT_LIV
particle_type = "Pi+"
number_of_particles = 1
beam_energy = 120GeV
# ...
```

```
[ElectricFieldReader]
model="linear"
bias_voltage=150V
depletion_voltage=50V
[GenericPropagation]
```

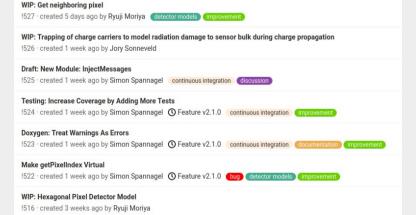
- 22 temperature = 293K
- 23 charge\_per\_step = 10
- 24 spatial\_precision = 0.0025um

17/09/2021

15 timestep\_max = 0.5ns

6

[SimnleTransfer]




#### Collaborative software development requires well-defined procedures – Otherwise quickly becomes unmaintainable

IV. Clean & Maintainable Code

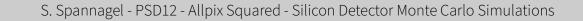
- Allpix Squared implements best practices for software development
  - Permissive open-source license: MIT
  - Extensive code reviews via merge requests
  - Strict enforcement of coding conventions & formatting
  - Regular static code analysis





17/09/2021

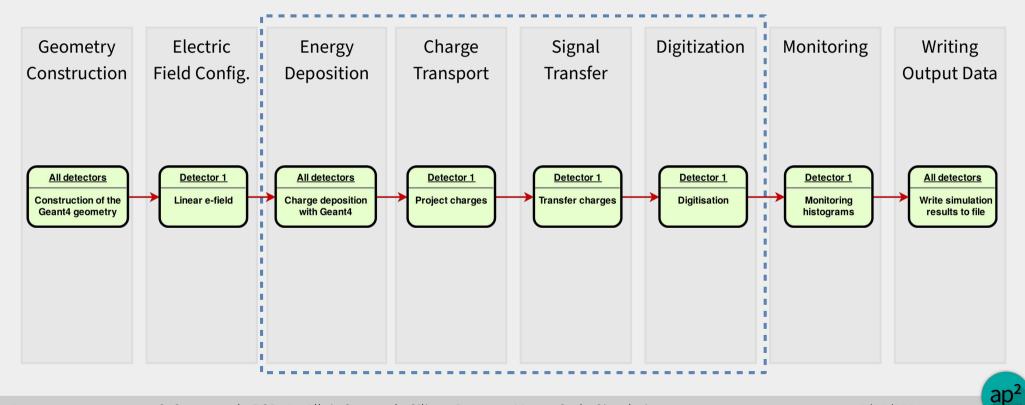



٠

#### The Simulation Chain



ap<sup>2</sup>

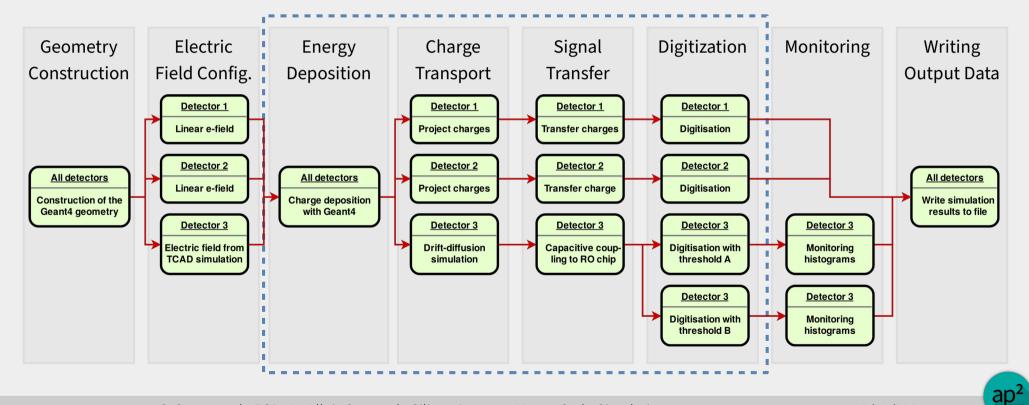

| Geometry<br>Construction | Electric<br>Field Config. | Energy<br>Deposition | Charge<br>Transport | Signal<br>Transfer | Digitization | Monitoring | Writing<br>Output Data |
|--------------------------|---------------------------|----------------------|---------------------|--------------------|--------------|------------|------------------------|
| construction             | rieu conig.               | Deposition           | Hansport            | Hansier            |              |            | Output Data            |
|                          |                           |                      |                     |                    |              |            |                        |
|                          |                           |                      |                     |                    |              |            |                        |
|                          |                           |                      |                     |                    |              |            |                        |
|                          |                           |                      |                     |                    |              |            |                        |
|                          |                           |                      |                     |                    |              |            |                        |
|                          |                           |                      |                     |                    |              |            |                        |



#### The Simulation Chain



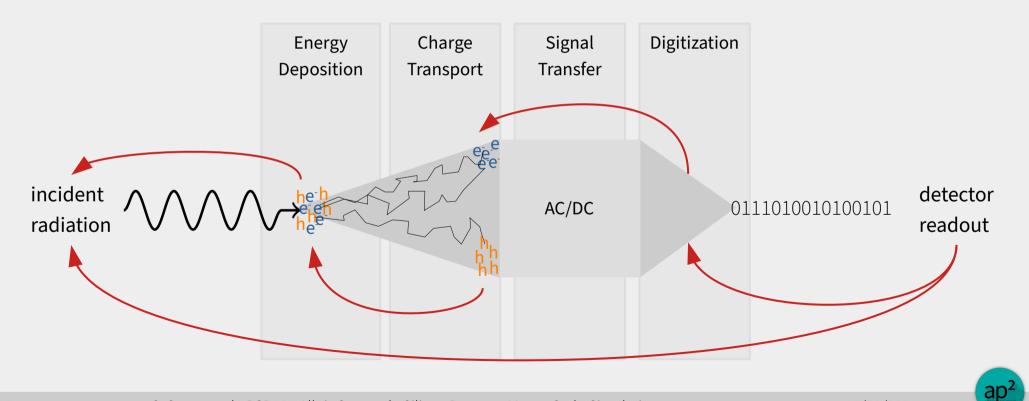
- Building blocks follow individual steps of signal formation in detector
- Algorithms for each step can be chosen independently






#### The Simulation Chain




- Simulation very flexible: modules configurable on per-detector level
- Multiple instances can be run in at the same time (e.g. to simulate different front-ends)

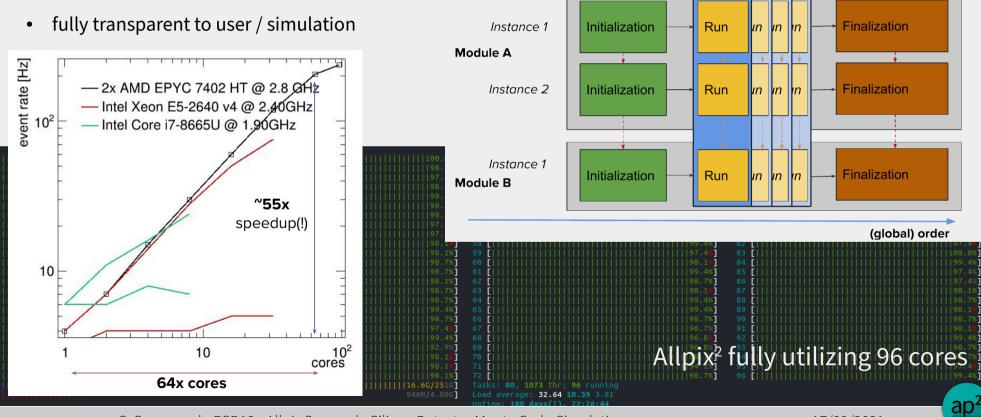


#### The Monte Carlo Truth



- Allpix<sup>2</sup> keeps history for all simulated objects
- Cross-references available for detailed analysis




### **Multithreading Support**

DESY.

order

(local)

- Allpix Squared supports event-based multithreading while retaining strong reproducibility:
  - exact same result, independent of number workers



S. Spannagel - PSD12 - Allpix Squared - Silicon Detector Monte Carlo Simulations



#### **Application Examples**

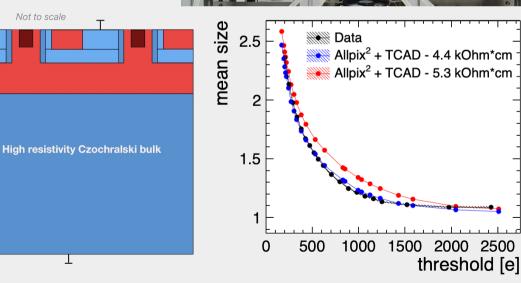
#### CMOS Sensors, Calorimetry, Neutron Detection



# Signal formation in CLICTD MAPS Prototypes K. Dort, Universität Gießen / CERN

Combining simulation tools for high-statistics MC studies of CLICTD protoypes •

Not to scale


- Electrostatic sensor simulation from TCAD
- Energy deposition, drift through field, induced current in Allpix Squared
- Comparison to data recorded at DESY II Test Beam Facility
- Samples produced on highresistivity Czochralski substrate
- Doping not precisely known
- Using simulation to confirm •

IEEE TNS, vol. 67, no. 10 (2020), 2263 doi:10.1109/TNS.2020.3019887 NIMA 964 (2020) 163784 doi:10.1016/j.nima.2020.163784

00 um









# EPICAL-2: Electromagnetic Pixel Calorimeter T. Rogoschinski, Universität Frankfurt

- Forward EM calorimeter for ALICE experiment ٠ 24 layers ALPIDE, 3mm tungsten absorbers • simulation test-beam data EPICAL-2 preliminary σ/μ (hits) σ/μ (hits) σ/μ (clusters) σ/μ (clusters) <u>\_24.6</u> ⊕ 1.9 <u>-21.2</u> ⊕ 2.1 √E 30  $-\frac{14.6}{\sqrt{E}} \oplus 1.8$  $\frac{19.0}{\sqrt{E}} \oplus 1.0$ 25 20 20 15 • electron energy E (GeV) electron energy E (GeV)
  - Calorimeter simulation in Allpix Squared
  - Good agreement of simulation and test beam data
  - Adjustments of beam profile & energy spectrum underway

19



EPICAL-2 preliminary

100 200 300 400 500 600

side view: row

EPICAL-2 preliminary

Allpix<sup>2</sup> simulation

Allpix<sup>2</sup> simulation

200

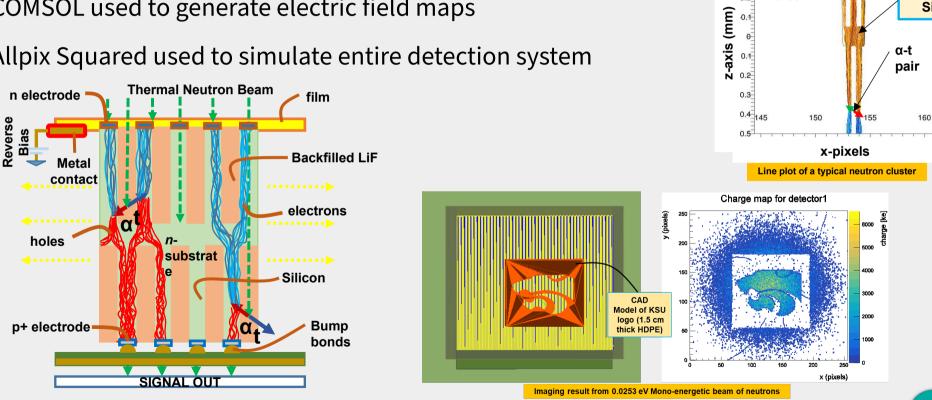
-20

-40

ayer ayer

16

top view


900 colum

400

ap

#### **Dual Sided Micro-Structured Neutron Detector** S. Sharma, Kansas State University

- n-type Si sensor with LiF trenches for neutron conversion ( $n \rightarrow t + \alpha$ ) •
- COMSOL used to generate electric field maps •
- Allpix Squared used to simulate entire detection system •





0.5

0.4

0.3

0.2

holes

LiF

trench

Si

ap

α-t

# **Ongoing Projects** and Developments

odule { end class ModuleManager; and class Messenger;

> f Base constructor for unique modules n config Configuration for this module

#### Module(Configuration& config);

Base constructor for detector modules config Configuration for this module detector Detector bound to this module g Detector modules should not forget to forward their detector to the

\ref InvalidModuleStateException will be raised if the module failed to s

#### ule(Configuration& config, std::shared\_ptr<Detector> detector);

ential virtual destructor.

s all delegates linked to this module

();

a module is not allowed

e&) = delete; const Module&) = delete;

ve behaviour (not possible with references)

ept = delete; .e&&) noexcept = delete;





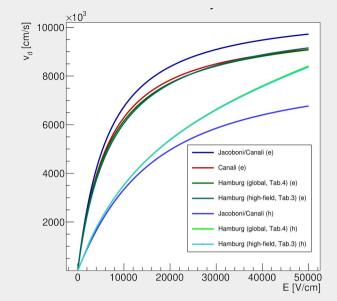
ap<sup>2</sup>

#### Mobility & Recombination

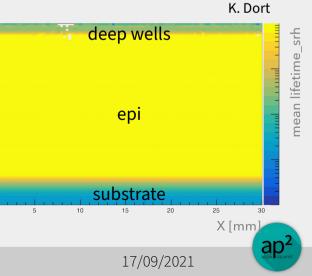
- Introduced possibility to select charge carrier mobility model
  - Field dependent
  - Doping concentration dependent
  - Optimized for high-field situations

[GenericPropagation]
temperature = 293K
mobility\_model = "masetti"

[mm]


二 0.01 N

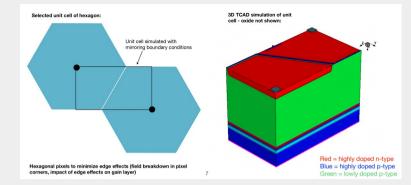
0.005


-0.005

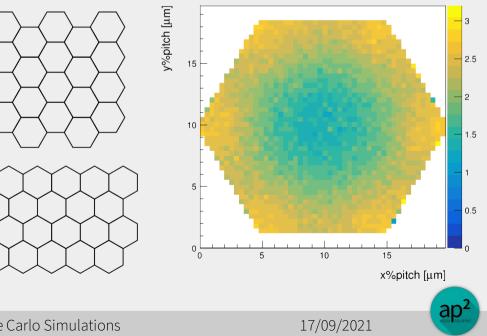
-0.01

-0.015




- With fast signal formation: all e/h pairs reach electrodes
- Finite charge carrier lifetime interesting in:
  - High-dopant regions
  - Low electric fields, signal formation via diffusion
- Support for position-dependent doping maps & lifetime calculation
  - Using combined Shockley-Read-Hall & Auger recombination




## **Hexagonal Pixel Geometries**

- More flexible geometry to support different pixel shapes
- Hexagonal geometry interesting for many applications
  - Avoid problematic field regions in corners
  - Symmetry more close to circle
    - more uniform response

• Other geometries also in preparation e.g. radial strips (ATLAS ITk)



MONOLITH – M. Munker / Uni Genève



#### Summary

- Silicon Detector Monte Carlo simulations: vital component of understanding & interpreting detector performance
- Allpix Squared:

comprehensive MC simulation framework for silicon detectors

- integrates existing toolkits
- provides validated algorithms
- is easy-to-get-started and well documented
- has a clean and solid code bases
- Used in many areas: CMOS sensors, calorimetry, DSMS neutron detectors, ...
- Continuous development and support, many new features already underway









#### Allpix Squared Resources





Website

https://cern.ch/allpix-squared



Repository

https://gitlab.cern.ch/allpix-squared/allpix-squared



Docker Images

https://gitlab.cern.ch/allpix-squared/allpix-squared/container\_registry



User Forum:

#### https://cern.ch/allpix-squared-forum/



Mailing Lists:

allpix-squared-users https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10262858

allpix-squared-developers https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10273730



User Manual:

https://cern.ch/allpix-squared/usermanual/allpix-manual.pdf



