High Granularity Resistive Micromegas for high particle rates environment.

M. DELLA PIETRA

University of Naples "Federico II" and I.N.F.N.

on behalf of RHUM R&D Project:

M. ALVIGGI, M.T. CAMERLINGO, V. CANALE, C. DI DONATO, R. DI NARDO, S. FRANCHELLUCCI, P. IENGO, M. IODICE, F. PETRUCCI, G.SEKHNIAIDZE. M. SESSA

Introduction

- Development of Resistive Micromegas detectors, aiming at precision tracking in high-rate environment without efficiency loss up to several MHz/cm²
- Roadmap for RHUM R&D project (Resistive High granUlarity Micromegas):
 - Implementation of a Small Pad Readout (allows for low occupancy under high irradiation);
 - Optimisation of the spark protection resistive scheme;
 - Layout optimisation (embedded electronics);
 - Scaling to larger area.
- Possible applications:

2

- ATLAS very forward extension of muon tracking (Large eta Muon Tagger as an option for future upgrade),
- Muon Detectors and TPC at Future Accelerators,
- Readout for sampling calorimeters.

14/09/21

Readout pad segmentation

- Basic idea: The finer is detector granularity, the lower is the detector occupancy
- Readout plane segmented in pads O(mm²) to ensure high rate capability and good spatial resolution in both coordinate.
- All the prototypes share the same cathode segmentation:
 - 16 x 48 = 768 readout Pads matrix with (1 mm x 3 mm) covering 4.8 x 4.8 cm² active area;
 - Circular pillars with r = 200 μ m, height 100-120 μ m (bulk technique) and 6 mm pitch;
- Fechnical solution inspired by a similar R&D by COMPASS and other groups within RD51 Collaboration;
- R&D started in 2015 (INFN and University of Napoli and Roma3) in collaboration with CERN and with the CERN PCB Workshop (Rui De Olivera) for prototype construction.

14/09/21

Spark suppression resistive layout

Scheme 1: PAD-Patterned embedded resistor:

- Two planes of independent screen printed carbon resistive pads with the same geometry of copper readout pads;
- The overlapped pads in the different planes are interconnected by silver vias, as shown in the picture.
- Each pad has an overall impedance ranging within (3 7 MΩ) and is completely separated from the neighbours

PSD12 - M. Della Pietra

14/09/21

Spark suppression resistive layout

Scheme 2: Double DLC (Diamond Like Carbon) uniform resistive layer

5

Two continuous resistive DLC layers (20 - 50 MΩ/□) interconnected between them and to the readout pads with network of conducting links with the pitch of few mm, to evacuate the charge;

Same concept of uRWell (see G.Bencivenni et al. 2015_JINST_10_P02008)

Spark suppression resistive layout

Scheme 2: Double DLC (Diamond Like Carbon) uniform resistive layer

- An improved production technique have been developed (SBU sequential built-up): with copper cladded DLC foils.
- This allows an easier photolithographic construction process improving of the alignment of vias and centering of the pillars.

DLC series: Case of a pillar not aligned with the silver via This can cause sparks

SBU series: Perfect alignment of each pillar.

14/09/21

6

Detector current vs time: charging up

- All prototypes with Pad-Patterned resistive layout shows sizeable effects of charging-up (gain reduction by ~20%) in current as function of time.
 - a possible explanation is due to dielectric charging-up of exposed Kapton surroundings the resistive pads. Still under investigation.
- DLC detectors do NOT show any sizeable charging-up effects (less than few %)
 - expected from the uniformity of the resistive layer and from the absence of exposed dielectric, with the exception of the pillars.
 - Very stable on short time scale (several minutes). we also observed a slow increase of agin over long time - few percent - still under investigation

Current measurement Vs Time during cycles of **X-Rays irradiation**

5.4 MHz

600

Time (s)

- PAD-P shows a sizeable gain drop due to the charging-up at lower rates (up to few MHz/cm²) but a lower ohmic drop due to the fact that each pads behaves as an independent resistor to ground.
- DLC20, SBU have a comparable behaviour in the explored region (up to ~100 MHz/cm²):
 - mean values of the resistance between first and second DLC protection foils are almost the same
 - For rates greater than 20-30 MHz/cm² they shown a higher gain drop w.r.t. PAD-P
- As expected DLC20 and SBU better than DLC50 (due to lower resistivity)
- Clear difference between the regions with 6mm and 12 mm grounding vias pitch (the larger the vias pitch the greater the impedance to ground seen by the collected charge)

More resistive layouts

- Hybrid PAD Patterned solution:
 - The resistive pad facing the amplification gap is always screen printed
 - The intermediate resistor is done by DLC layer

This solution combines the independence of the resistive pads in collecting the charge with a better uniformity of the impedance seen by the charge.

14/09/21

10

Gain vs Rate over 4 orders of magnitude

X-rays exposure area 0.79 cm² (shielding with 1 cm diameter hole)

- PAD-P schema (and its hybrid version):
 - Significant gain drop at "low" rates dominated by charging-up effects
 - Negligible ohmic voltage drop for the individual pads for rates between 0,1 and ~2 MHz/cm2
- DLC and SBU series:

11

Almost constant gain at "low" rates (up to few MHz/cm².

Studies with different gas mixture

- Added 2% of Isobutane to our standard gas mixture in order to improve the detector stability
 - From Ar:CO₂ 93:7 to Ar:CO₂:iC₄H₁₀ 93:5:2
- Very high gain reachable in very stable conditions (⁵⁵Fe sources)

13

Without isobutane: Instability for Gain > ~15k

With isobutane: Stable operation up to Gain >20k

Different resistive layouts comparison

- All different sparks suppression resistive layouts have been extensively studied during last years in similar conditions gas mixture and of GAIN
- All the prototypes can be operated with a robust gain (7000) up to 20 MHz/cm².
- DLC prototypes, and particularly the improved SBU series, show a better spatial and energy resolution with respect the PAD patterned ones.
- PAD Patterned prototypes show a decrease of gain at low rates (charging up) but present a less important ohmic drop at very high rates.
- Detector stability is good with Ar:CO₂ 93:7 up to very high rate but adding 2% of isobutane (Ar:CO₂:iC₄H₁₀ 93:5:2 is not flammable mixture) a gain of 20k can be reached without any spark.

14/09/21

14

Next Step: Larger surface and integrated Electronics

- A larger area (20 x 20 cm²) detector is under construction:
 - SBU resistive layout; 4800 readout pads (1x8 mm²) only partially instrumented
- In order to solve the problem of the signal routing when scaling to larger surface a small prototype (64 x 64 mm²) with integrated electronics on the back-end of the anode PCB has been built.
- APV25 FE chip used for the proof-of-concept: looking for alternative and more suitable solutions

FRONT VIEW

15

BACK VIEW

Summary

- Several small-pad resistive micromegas prototypes, with different concepts of the spark protection resistive system, have been tested and compared.
- Prototype with embedded electronics is built and under test.
- Gas mixture optimization studies are ongoing
- Wide R&D program still to be completed:
 - Evaluate new FE chips alternative to APV25;
 - Produce and test larger prototypes (20x20) cm² with embedded electronics;
 - Ageing studies;
 - Detector simulation studies and resistive layout parameters optimization.

Acknowledgements and bibliography

Many thanks to:

17

- R. De Oliveira, B. Mehl, O. Pizzirusso and A. Texeira (CERN EP-DT) for ideas, discussions and the construction of the detectors
- CERN RD51 Collaboration CERN GDD Lab for the continuous support during prototypes testing.

More significant publications and conference proceedings from our R&D:

- M. Alviggi et al., "Construction and test of a Small-Pads Resistive Micromegas prototype", JINST 13 (2018) no.11, P11019
- M. lodice et al., "Small-pad Resistive Micromegas: Comparison of patterned embedded resistors and DLC based spark protection systems" J. Phys.: Conf. Ser. (2020) 1498 012028

14/09/21

Thanks. Questions are welcome!

14/09/21

18

Our ancestor: Resistive Micromegas for ATLAS New Small Wheel upgrade

- A metallic micro mesh separates the drift volume (2-5 mm thick) from the amplification volume (~100 µm thick);
- electrons and ions produced in the amplification volume are collected in ~1 ns and ~100 ns respectively;
- spatial resolution < 100 µm independently from the incoming track angle;
- resistive anode strips on the top of the readout strips (with insulator in between) to suppress discharges.
- The "ATLAS" resistive strip micromegas with a wide surface (about 2 m²) will operate at a moderate rate of about 20 KHz/cm2.

Gain measurements setup

Measurements have been carried out by means of two radiation sources:

- ⁵⁵Fe sources with two different activities
 - Low activity (measured rate ~ 1 kHz)
 - High activity (measured rate ~ 100 kHz)
- 8 keV Xrays peak from a Cu target with different intensities varying the gun excitation current

Different gain measurement methods:

- Reading the detector current from the mesh (or from the readout pads) and counting signal rates from the mesh
- Signals amplitude (mesh) from a Multi Channel Analyser.

At higher rates

21

- Rates measured at low currents of the X-Ray gun
- Extrapolating Rate Vs X-Ray-current when rates not measurable or not reliably anymore

Comparison between prototypes has been done @ fixed gain ($\sim 7 \times 10^3$) Gas Mixture Ar: CO₂ 93:7 Chosen as the safest gas to operate under high irradiation for long time

Xrays Gun

Test beam (CERN and PSI) setup

SBU2 DLC20 SBU1 PADP

Prototype with Integrated Electronics

23

First tests promising:

- Nice Pedestals structure and signal response from APV using ⁵⁵Fe source and random trigger for DAQ → BUT ONLY on some channels
- Reason understood (issue in the elx Layout)

 \rightarrow fixed it in the next prototype !

Example of spark events

PADP 532 V

4900

time (s)

time (s)

4800

SBU2 495 HV

Studies on sparks probability (TB @PSI)

25

Test beam with 300 MeV/c pions @ PSI with a rate of ~0.1 MHz/cm² has been mainly devoted to study the sparks probability for different prototypes

 Gain measurements with pions are in good agreement with ⁵⁵Fe and Cu-target X-Rays measurements.

 With a gain greater than 7500 PAD-P is the mare solution prototype.

We count as "a spark" any change in drawn current greater than 30%

Discharge studies @ PSI

14/09/21

Efficiency for PAD-P prototype in TB 2016

 Efficiency greater than 99% for muons and still above 98% for high energy pions up to a trigger rate of 400 MHz, corresponding to a pion rate of few MHz/cm2 in the middle of the pion beam spot

Gain ohmic drop @ very high rates

Fit attempted with the model in G. Bencivenni et al. 2015 JINST 10 P02008 considering a Ohmic drop

- Fit in good agreement with data for DLC20
- Fit failure on Paddy3 as expected due to the different contribution to the drop (charging-up)

14/09/21

29

Rate capability dependence on irradiated area

Charging – up with Xrays

- Test to probe effects of charging up on Pad-P3 ramping up and down I_{xray}, successive • measures taken within short period of time (but the whole measure lasted > 3 hours)
- No strong effects of charging-up seen on DLC20 •

31

