PAUL SCHERRER INSTITUT

Viktoria Hinger :: Photon Science Detector Group :: Paul Scherrer Institute

Advancing the JUNGFRAU detector toward low-energy X-ray applications

PSD12 :: 13 September 2021 :: University of Birmingham

The JUNGFRAU detector

- current applications
- working principle

Toward low-energy X-rays

- Why JUNGFRAU?
- improvements of the system

JUNGFRAU at the SwissFEL Maloja end station

- setup at the beamline
- first results

Outlook – JUNGFRAU meets LGADs

- LGAD principle
- advantages and critical points
- development at PSI

Summary

- Short, intense, laser-like X-ray pulses
 - Observe extremely fast processes
 - Probe electronic structure of materials

JUNGFRAU detector is optimized for high photon rates at XFELs

Applications of JUNGFRAU at SwissFEL

- Covers all needs of SwissFEL
- Hard X-rays (2 keV—16 keV):
 - 15 systems in operation
 - (serial) femtosecond crystallography
 - X-ray emission spectroscopy
 - X-ray diffraction
 - beam diagnostics
 - -...
- Soft X-rays (250 eV-2 keV):
 - 1 system in operation (Maloja), more in planning
 - coherent diffractive imaging (CDI)
 - resonant inelastic X-ray scattering
 - plasmonic dynamics
 - transient resonance scattering

- ...

The JUNGFRAU detector

- Charge integrating hybrid pixel detector (75 × 75 μm²)
- 3 dynamic switching linear gains per pixel
- Low noise (< 52 e⁻ ENC in high gain)
- Dynamic range of 10⁴ 12 keV photons
- Maximum frame rate 2.2 kHz
- Modular hardware → scalability for large-area detectors

JUNGFRAU at other FEL facilities

JUNGFRAU 4M at PAL (South Korea)

JUNGFRAU at synchrotrons

JUNGFRAU 1M at SLS: thaumatin crystal diffraction

Swiss Light Source (SLS)

- "Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector", Nature Methods volume 15, pages 799-804 (2018)
- KEK Photon Factory (Japan)

JUNGFRAU 4M in helium tank environment at KEK Photon Factory

First structure solved by JUNGFRAU: Insulin October 2016 – credits K. Nass, S. Redford

Toward low-energy X-rays – Why hybrid detectors?

Detector options in use now...have some shortcomings

CCD/EM-CCD

- readout speed
- active area
- radiation damage

pn-CCD

- dynamic range
- active area
- availability

back side illuminated CMOS

- readout speed
- dynamic range
- active area
- radiation damage

→JUNGFRAU becomes attractive because it provides

- fast readout
- high dynamic range
- (relatively) low noise
- scalable area
- radiation tolerance (measured to ~10 MGy)
- ...and it is readily available for use at SwissFEL

Percival

- active area
- availability

Improving the JUNGFRAU system

- Output linearity
 - pixel buffer
- Noise
 - readout capacitance
 - amplifier
- \rightarrow Improved for **new ASIC version 1.1**

Improving the JUNGFRAU system

Measurement results of sensors with different back side processing

JUNGFRAU 4M at Maloja

- Multi-purpose low-energy X-ray beamline at SwissFEL
- 4M JUNGFRAU installed
- 6M for larger angles in planning
- In planning for Furka end station
- Commissioning with xenon cluster target

First results with JUNGFRAU at Maloja

Cumulative energy spectrum in high gain (1000 frames all pixels)

102

103

photons

First results with JUNGFRAU at Maloja

Cumulative energy spectrum in high gain (1000 frames all pixels)

103

104

Page 12

First results with JUNGFRAU at Maloja

Cumulative energy spectrum in high gain (1000 frames all pixels)

Page 12

102

103

photons

JUNGFRAU charge integrating ASIC

Low noise readout (~ 34 e⁻ ENC)

LGAD sensor

- Gain ~ 10
- Output signal ∝ deposited energy

Improve signal-to-noise ratio and allow single photon detection down to ~ 250 eV

LGAD: Low Gain Avalanche Detector

- Sensors with intrinsic gain
- Deep p⁺ implant serves as charge multiplication layer
- Proof of principle for low-energy X-ray detection
 - M. Andrä et al., "Development of low-energy X-ray detectors using LGAD sensors", J. Synchrotron Rad. (2019)

- Quantum efficiency
 - thickness and quality of entrance window

LGADs for low-energy X-rays – critical points

- Quantum efficiency
 - thickness and quality of entrance window
- Fill factor

passivation

SiO₂

n

-inverted LGAD (iLGAD)

readout ASIC

p⁺-implant

p-type Si

p⁺ multiplication

X-rays

X-rays

- Quantum efficiency
 - -thickness and quality of
 - entrance window
- Fill factor
 - -inverted LGAD (iLGAD)
- Gain uniformity
 - -dependency on absorption depth (caused by inverted design)

- Wafer run with design variations to be delivered autumn 2021
 - -entrance window (also including the optimized process)
 - -gain layers (doping concentration and depth)
 - -ilgad
 - sensor thickness 320 μm
- Characterization of prototypes and full-scale modules
- Assessment of performance in real-life scenarios

• JUNGFRAU is a charge integrating hybrid pixel detector for X-ray science at FELs and synchrotron sources.

- JUNGFRAU is a charge integrating hybrid pixel detector for X-ray science at FELs and synchrotron sources.
- While optimized for hard X-rays, JUNGFRAU has successfully resolved single photons at 800 eV at the Maloja end station of SwissFEL.

- JUNGFRAU is a charge integrating hybrid pixel detector for X-ray science at FELs and synchrotron sources.
- While optimized for hard X-rays, JUNGFRAU has successfully resolved single photons at 800 eV at the Maloja end station of SwissFEL.
- In combination with **LGAD sensors**, JUNGFRAU presents a promising option as a photon detector for **low-energy X-rays down to 250 eV**, providing both single photon resolution and large dynamic range.

JUNGFRAU charge integrating ASIC

inverted LGAD sensor

Acknowledgements

Open postdoc position: http://psi.ch/node/46984

Photon Science Detector Group

- Rebecca Barten
- Anna Bergamaschi
- Martin Brückner
- Maria del Mar Carulla Areste
- Sabina Chiriotti Alvarez
- Roberto Dinapoli
- Simon Ebner
- Erik Fröjdh
- Dominic Greiffenberg
- Shqipe Hasanaj
- Thomas King
- Pawel Kozlowski
- Carlos Lopez Cuenca
- Davide Mezza
- Konstantinos Moustakas
- Aldo Mozzanica
- Christian Ruder
- Bernd Schmitt
- Dhanya Thattil
- Jiaguo Zhang

Maloja beamline

- Andre Al Haddad
- Dimitry Ozerov
- Kirsten Andrea Schnorr

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 884104 (PSI-FELLOW-III-3i).

