12th International Conference on POSITION SENSITIVE DETECTORS

Characterization of a large LGAD sensor for proton counting in particle therapy

O. A. Marti Villarreal, G. Peroglio, A. Vignati, S. Giordanengo, F. Mas Milian, M. Ferrero, M. Abujami, C. Galeone, O. Hammad Ali^{*}, M. Centis Vignali^{*}, G. Borghi^{*}, F. Ficorella^{*}, R. Cirio, V. Monaco, R. Sacchi

12th International Conference on PSD

Oscar A. Marti Villarreal

Outline

• Motivation

Laboratory characterization

-> MoVEIT 2020 FBK's production

-> Static characterization of LGAD sensors (current-voltage, capacitance-

frequency, and capacitance-voltage)

-> Summary

-> Transient Current Technique (TCT) test

• Conclusions

Motivation

Modeling and Verification for Ion beam Treatment planning (INFN)

Implementation of advanced radiobiological models in ion TPS, experimental verification in-vitro and in-vivo

One device is being developed based on Ultra Fast Silicon Detectors:

- 1. to **directly count** individual protons
- area 3x3 cm²;
- up to fluence rate of $10^8 \text{ p/s}^* \text{ cm}^2$ (with error < 2% : clinical requirement);
- segmented in strips (beam projections in two orthogonal directions).

For additional details https://www.tifpa.infn.it/projects/move-it/

Motivation (Cont.)

SOLID STATE DETECTORS

- Fast collection time (~ns)
- Excellent time resolution (<100 ps)
- Good sensitivity (single protons)

Optimal for Energy measurement using ToF techniques

- **Radiation resistance**
- **Pile-up effects**

Laboratory characterization

MoVEIT 2020 FBK's production

Wafer n.	Dopant	Substrate	Dose Pgain	Carbon	Diffusion	Thickness (µm)
1	Boron	Ері	2.4	YES	L	45
2	Boron	Ері	2.4	YES	L	45
3	Boron	Si-Si	2.4	YES	L	55
4	Boron	Si-Si	2.4	YES	L	55
5	Boron	Si-Si	2.4	YES	L	55
	Boron	Si-Si	2.4	YES	L	55
	Boron	Si-Si	2.4	YES	L	55
8	Boron	Si-Si	2.45	YES	L	55
9	Boron	Si-Si	2.45	YES	L	55
10	Boron	Si-Si	2.45	YES	L	55
11	Boron	Si-Si	2.45	YES	L	55
12	Boron	Si-Si	2.45	YES	L	55
13	Boron	Si-Si	2.45	YES	L	55
14	Boron	Ері	2.4	YES	L	45

Detectors used for proton counting

Туре А

-> Large area: 2.74 x 2.74 cm²

Dimension of the metal: (NG) Strip 1,2(160 $\mu m \ge 26260 \mu m$) (G) Strip 3 - 1 4 6 (160 $\mu m \ge 26260 \mu m$) Pitch: 180 μm

Detectors used for testing

ESA_ABACUS frontend board + Detector Type A Final counter prototype

Experimental setup

-> Switching MATRIX and a dedicated probe card (current-voltage)

-> Manipulators (capacitance-frequency and capacitance-voltage)

-> Elastomer (current-voltage)

-> Transient Current Technique (TCT) test (interstrip distance)

The neighboring strips+GR to the strip that we are measuring were grounded.

Example of some IV

Probe card measurements

Elastomer measurements

Leakage current (A) at 160 V

Breakdown Voltage (V)

Depletion Voltage (V)

								×10 ⁻⁵
3	1.275e-05	1.14e-05	2.491e-05	1.105e-05	1.376e-05	1.275e-05	9.999e-05	- 9
5	1.013e-05	9.62e-06	1.4e-05	1.139e-05	1.119e-05	1.195e-05	2.568e-05	- 8
6	3.351e-05	9.966e-06	1.099e-05	1.42e-05	1.055e-05	1.082e-05	1.431e-05	- 7
7	0.0001	1.355e-05	1.445e-05	9.216e-05	0.0001	2.131e-05	1.375e-05	- 6
wAFEN 8	1.453e-05	1.775e-05	2.651e-05	1.758e-05	1.605e-05	0.0001	1.791e-05	- 5
9	3.686e-05	3.481e-05	3.425e-05	3.116e-05	3.163e-05	0.0001	4.881e-05	- 4
10	1.628e-05	4.986e-05	1.329e-05	1.167e-05	1.255e-05	1.193e-05	1.719e-05	- 3
11	9.999e-05	9.999e-05	1.937e-05	9.999e-05	1.505e-05	2.456e-05	2.982e-05	- 2
13	2.751e-05				5.466e-05			1

5

6

7

4

2

1

Probe card measurements

Elastomer measurements

3	21.99	22	22	22	22	22	22	- 26
5	22	22	22.02	21.99	22.02	22	22.01	- 25.5
6	22.01	22	22.01	22	21.99	22.01	21.99	- 25
7	21.6	22.01	21.6	21.61	26.41	22.02	22	- 24.5
WAFER	23.99	24.05	24.01	23.99	23.99	23.99	23.99	- 24
9	23.99	23.99	22.01	22	23.99	< 10	23.99	- 23.5
10	24.04	24.01	22.01	21.99	24.01	21.99	23.99	- 23
11	22.01	22.01	23.99	23.99	22	24	24	- 22
13	22		h		23.99			NaN
	1	2	4	5	6	7	8	

Doping Profile

12th International Conference on POSITION SENSITIVE DETECTORS

man

Hosted by UNIVERSITYOF BIRMINGHAM

W5-CV-37.txt W6-CV-37.txt W7-CV-37.txt

W1-CV-37.txt W8-CV-37.txt W9-CV-37.txt W10-CV-37.txt W11-CV-37.txt

Capacitance vs. Bias Voltage

Summary

Probe Card

Sensor	Bad Strips (UNITO)	Bad Strips (FBK)
<u>W1-A1</u>	/	/
<u>W1-A2</u>	/	/
<u>W1-A3</u>	/	/
<u>W1-A5</u>	83	82,83
<u>W1-A6</u>	/	/
<u>W1-A7</u>	/	/
<u>W1-A8</u>	/	/
<u>W3-A2</u>	/	/
<u>W3-A6</u>	/	/
<u>W5-A2</u>	/	/
<u>W5-A7</u>	/	/
<u>W6-A2</u>	/	/
<u>W6-A7</u>	/	/
<u>W13-A1</u>	12,22,23	12,22,23
<u>W14-A2</u>	70	70
<u>W14-A4</u>	/	/
Yield	99.79	99.74
Yield (All production)	-	89.40

Elastomer

Bad sensors	Total sensors Tested	% Bad sensors
22	66	33.33

Experimental setup scheme

Amplifier output

TCT measurements

82

81.8

81.6

81.4

Interstrip (µm) 80.8 80.8

80.6

80.4

80.2

80

40

Interstrip measured for a fixed bias voltage

174.6 V

¹Paternoster, G., et al. "Novel strategies for fine-segmented Low Gain Avalanche Diodes." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 987 (2021): 164840.

Interstrip distance calculation for -40 (μ m) along the strip

Conclusions

- A global yield ratio between working stips over the total number of strips measured in the entire production of 89.4% were found;
- The average full depletion voltage obtained was 22.12-23.47 V and 34.98 V for Si-Si and Epi wafer, respectively and a mean breakdown voltage for good sensors measured on the backplance of about 212 V were found;
- From the selection of 16 sensors from differents wafers we found a consistently between the measurements taken at FBK and at the University of Torino, where the yields were 99.74% and 99.79% respectively;
- The inter-strip distance measured was 80.8 μm , 22 % larger than the nominal no-gain distance and has a small dependence on bias voltage or the signal amplitude;
- The laboratory characterization showed good results and prepared the groundwork for the selection of the best set of sensors to be tested on clinical proton beams.

Acknowledgments

This work was financed by the INFN CSN V (MoVe-IT project), Ministero della Ricerca, PRIN 2017, project "4DInsiDe" (MIUR PRIN 2017L2XKTJ) and by the European Union's Horizon 2020 Research and Innovation funding program (Grant Agreement no. 669529-ERC UFSD669529). In addition, it has been supported by MIUR Dipartimenti di Eccellenza (ex L.232/2016, art.1, cc. 314, 337). We kindly acknowledge the dedicated collaboration of FBK and the UFSD group in this research.

Thank you!

Hosted by UNIVERSITY OF BIRMINGHAM

POSITION SENSITIVE