
# Development of a single-photon imaging detector with pixelated anode and integrated digital readout

#### Nicolò Vladi Biesuz for the 4DPHOTON team

12<sup>th</sup> International conference on Position sensitive Detectors

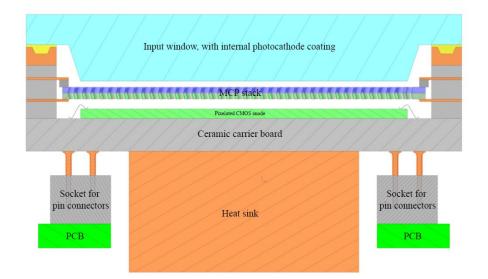
#### Overview

- The hybrid detector concept
- The Timepix4 ASIC
- Expected performance
- Design status
- The DAQ system



## The 'hybrid' detector [M. Fiorini et al, JINST 13 (2018) C12005]

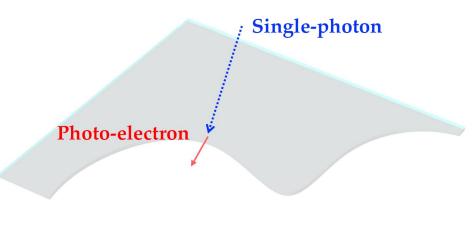
We are developing a single-photon detector:


- based on a vacuum tube
- transmission photocathode with high QE in the spectral region of interest
- dual micro-channel plate stack
- a pixelated CMOS read-out anode with integrated front end electronics

| Timing resolution   | few 10 ps                |
|---------------------|--------------------------|
| Position resolution | 5-10 μm                  |
| Maximum rate        | 10 <sup>9</sup> hits/s   |
| Dark count rate     | 10 <sup>2</sup> counts/s |
| Active area         | ~7 cm <sup>2</sup>       |
| Channel density     | 0.23 M channels          |

N.V. Biesuz - Development of a single-photon imaging detector with pixelated anode and integrated digital readout

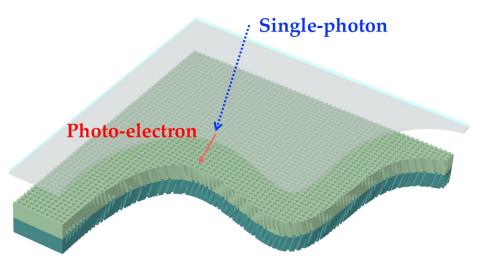
· 12<sup>th</sup> International conference on Position sensitive Detectors


## The detector assembly



- Vacuum-based detector

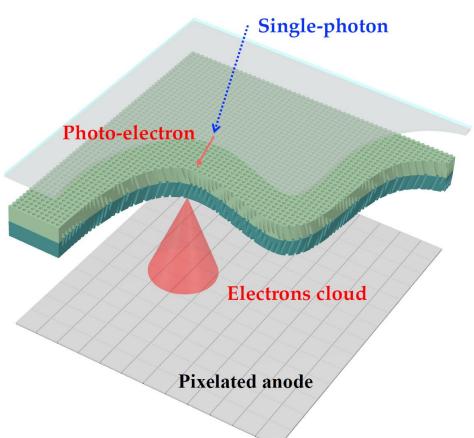
   Assembly under high vacuum (10<sup>-10</sup> mbar)
- Assembly and bonding to minimize distance between components
- High-speed connections through pins in ceramic carrier board
  - custom PGA 2.54 mm pitch
  - socket for detector I/O and low voltage
- Heat sink under AISC
  - Assembly < 21° C with ASIC @ peak power
- PCB allows connection to FPGA-based DAQ system


#### The hybrid detector: entrance window + photocathode



Photon conversion using high Quantum Efficiency (QE) Photocathode

- E.g. bialkali photocathode
  - 40-50% QE
  - $\circ$  10<sup>2</sup> Hz dark count rate @300 K
  - Best for timing
- Flexible design allows to use different photocathodes


#### The hybrid detector: microchannel plate stack

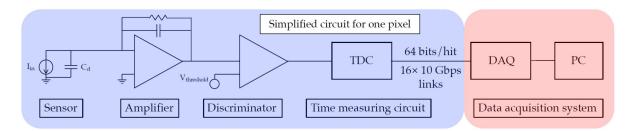


Microchannel plate stack (chevron)

- > 10<sup>4</sup> gain
- 5 µm pore size
- Atomic layer deposition for increased lifetime:
  - >20 C/cm<sup>2</sup>
- Short distance from MCP to cathode and anode for best time and position resolution

### The hybrid detector: pixelated anode




Pixelated anode

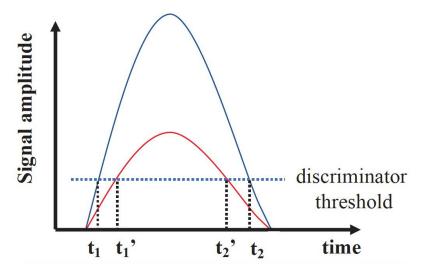
- Electron cloud spread over a number of pixels
- Anode is an ASIC
- it integrates digital and analog front-end
  - pixels coordinates
  - pixels Time of Arrival
  - pixels Time over Threshold
- Output:
  - 64 bits of data per event and per pixel with 64B/66B encoding
  - transmitted on 16 high speed links @ 10
     Gbps

N.V. Biesuz - Development of a single-photon imaging detector with pixelated anode and integrated digital readout - 12<sup>th</sup> International conference on Position sensitive Detectors

## The Timepix4 ASIC

- Timepix4 ASIC in 65nm CMOS
  - Developed by the Medipix Collaboration for hybrid pixel detectors



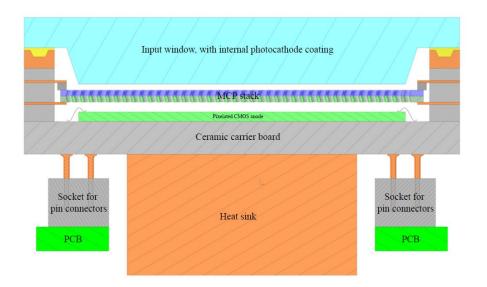

- 512 x 448 pixels (use bump pad as anode)
  - ο square pitch: 55 μm
- Integrates Time to Digital Converter (TDC)
  - 195 ps bin size (56 ps rms resolution)
- High data rate capability
  - 160 Gbps
  - $\circ$  5 10<sup>9</sup> hits/mm<sup>2</sup>/s
- Large Active Area: 6.94 cm<sup>2</sup>

N.V. Biesuz - Development of a single-photon imaging detector with pixelated anode and integrated digital readout

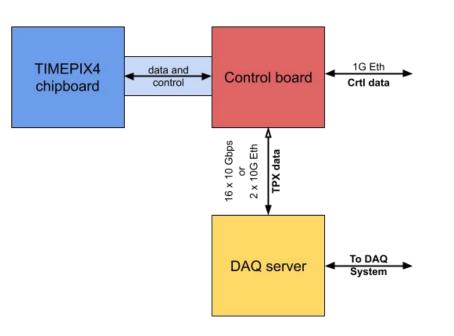
- 12<sup>th</sup> International conference on Position sensitive Detectors

## The Timepix4 ASIC: improving resolution

- For each pixel, it provides combined measure of:
  - Time-of-Arrival [ $t_1$ ]
  - $\circ \quad \text{Time-over-Threshold} \ [ \ \textbf{t}_2 \ \textbf{-t}_1 \ ]$
- Time over Threshold used to:
  - $\circ$  Correct for time-walk effect [  $t_{1}$ ,  $t_{1}$ , ]
  - Improve resolution on cluster centroid
  - 3D clustering (space and time)
    - Improve timing resolution by multiple sampling
    - Cluster Time of Arrival Resolution few 10s ps




N.V. Biesuz - Development of a single-photon imaging detector with pixelated anode and integrated digital readout - 12<sup>th</sup> International conference on Position sensitive Detectors

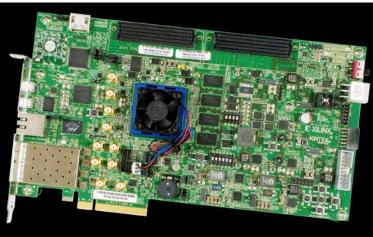

#### Design status

- 2<sup>nd</sup> version of the Timepix4 ASIC
   available by the end of the year
   2021 dedicated to study of the ASIC
- ceramic carrier and tube design ongoing
  - estimated production 2022

Assembly and production of tubes foreseen in 2022



## The Data Acquisition system architecture




The project includes the design of a dedicateds socket and Data Acquisition (DAQ) system

- Front-end electronics architecture is data driven
  - 64 bit for each pixel hit
  - 16 x 10.24 Gbps serial links
- The detector is hosted on a dedicated carrier board
- A FPGA-based control board:
  - $\circ$  hosted far from detector
  - $\circ$  ~ used for configuration and serial data decoding
  - sends pre-processed data to server for storage and post-processing

#### The Data Acquisition system





Currently the SPIDR4 read-out system developed by Nikhef is used for testing the ASIC

Development of own "general purpose" DAQ system in progress

- based on Xilinx dev kit
  - custom board foreseen for the future
- uses standard protocols
  - 1G ethernet for configuration data from controller
  - 10G ethernet for detector data to storage
  - FMC for detector communication
- Enough resources for minimal pre-processing and monitoring
  - $\circ$  TBD based on use-case

## Summary

We are developing a detector for visible single photons:

- based on a vacuum tube
- a bare Timepix4 CMOS ASIC (anode)
- a Micro Channel Plate stack

This detector will allow the detection of up to 10<sup>9</sup> photons/s with simultaneous measurement of time and position with excellent resolutions

- Fully exploit both timing and position resolutions of a MCP
- High-performance data acquisition (up to ~160 Gbps)

The project foresees the development of a dedicated DAQ system

#### **4DPHOTON** Team

- J. A. Alozy
- N. V. Biesuz
- M. Campbell
- V. Cavallini
- A. Cotta Ramusino
- M. Fiorini
- X. Llopart Cudie

CERN INFN Ferrara CERN University of Ferrara, INFN Ferrara (student) INFN Ferrara University of Ferrara, INFN Ferrara CERN





