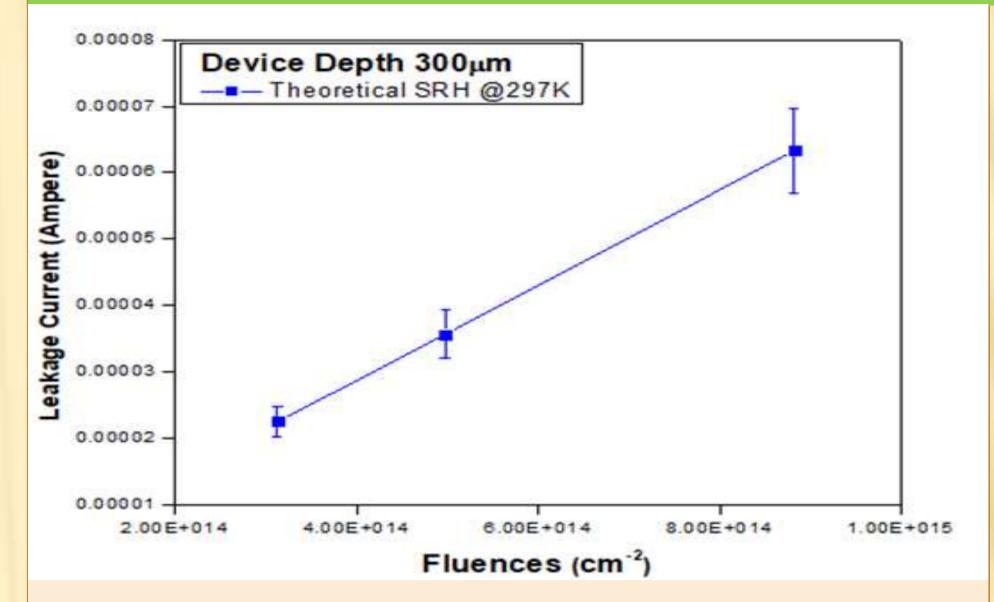


Investigation of Mixed Irradiation Effects in p-MCz Thin Silicon Microstrip Detector for the HL-LHC Experiments <u>Shilpa Patyal</u>, Nitu Saini, Balwinder Kaur, Puspita Chatterji, Ajay K. Srivastava. Department of Physics, University Institute of Sciences, Chandigarh University,

Gharuan-Mohali, Punjab, 140413, India.

ABSTRACT: A lot of R & D work is carried out in the CERN RD50 Collaboration to find out the best material for the Si detectors that can be used in the harsh radiation environment of HL-LHC, n and p-MCz Si was identified as one of the prime candidates as a material for strip detector that can be chosen the phase 2 upgrade plan of the new Compact Muon Solenoid tracker detector in 2026. For the very first time, in this work, an advanced four level deep-trap mixed irradiation model for p-MCz Si is proposed by the comparison of experimental data on the full depletion voltage and leakage current to the Shockley Read Hall recombination statistics results on the mixed irradiated p-MCz Si PAD detector. In this work, we have determined the effective introduction rate n_{eff} of shallower donor deep traps

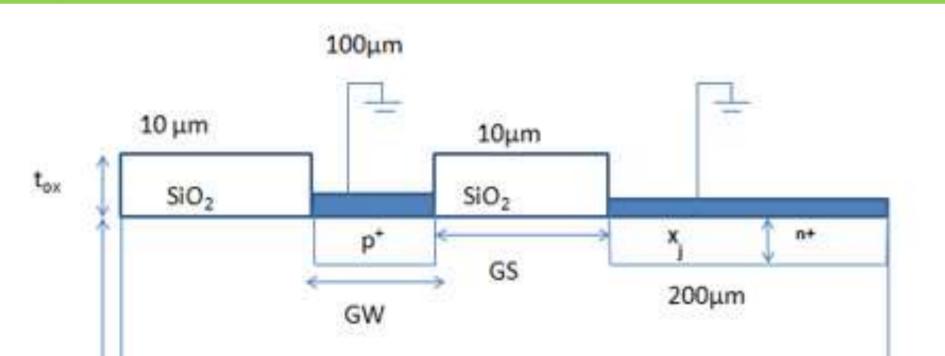

Four Level Deep Trap Mixed Irradiated Radiation Damage Model for p-type MCz Si

	macroscopic parameters	Energy level (eV)	σ _n (capture crossection of electrons) [cm ²]	σ _p (capture crossection of holes) [cm²]	• (introduction rate)[cm ⁻¹]
E5/Acceptor	Increase of leakage current	E _c -0.46 eV	1.41E-15	2.79E-15	12.4
H (152K)/Acceptor	-ve space charge	E _v +0.42 eV	4.58E-13	6.15E-13	0.04
CiOi /Donor	+ve space charge	E _v +0.36 eV	2.08E-18	2.45E-15	1.1
E (30K) / Donor	+ve space charge	E _c -0.10 eV	2.30E-14	2.00E-15	Observed with in increasing fluences see fig.5

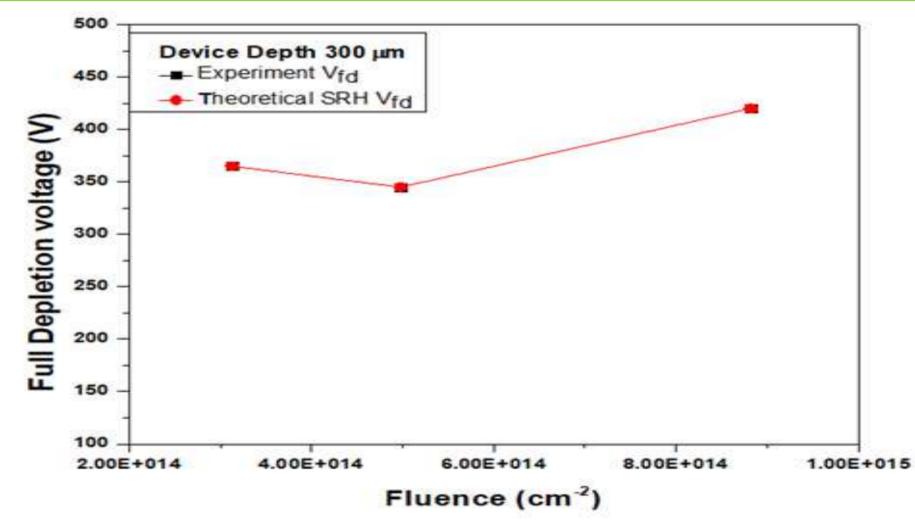
* Proposed Four level deep traps mixed irradiated radiation damage model for p-MCz Silicon.

The four-level deep trap mixed irradiation damage model shows the good comparision of the experimental data and theoretical SRH calculations/TCAD.

Leakage current in Mixed Irradiated p-MCz Si PAD Detector



> Leakage current @297K [4] (shows the good agreement with experimental data's at RT+4K) increases with irradiation fluence for 300 µm p-type Si PAD detector.


E30K using SRH theory calculations for exp. N_{eff} and that can shown the behavior of space charges and electric field distribution in the p-MCz Si strip detector and compared its value with the n_{eff} of shallower donor deep trap E30 K in the n -MCz Si microstrip detector.

Prediction uncertainty in the p-MCz Si radiation damage mixed irradiation model considered in the full depletion voltage and leakage current. A very good agreement is observed in the experimental and SRH results. This radiation damage models also used to extrapolate the value of the full depletion voltage at different mixed (proton + neutron) higher irradiation fluences for the thin p-MCz Si microstrip detector.

p-MCz Si PAD Detector Design Model

Comparison of Experimental and SRH value of Full Depletion Voltage (V_{fd}) for Thick p-MCz Si PAD Detector

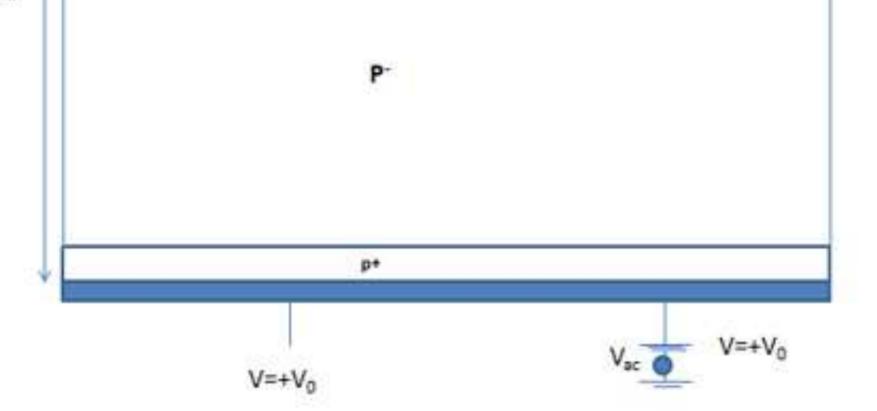
□The SRH calculation has been done on the mixed irradiated p-MCz Si PAD detector using our mixed irradiated radiation damage model

 \square The Experimental and SRH values of V_{fd} for the 300 μm thick p-MCz PAD detectors shows a good agreement

Effect of Mixed Irradiated fluence on Full Depletion Voltage of Thin p-MCz Si PAD detector

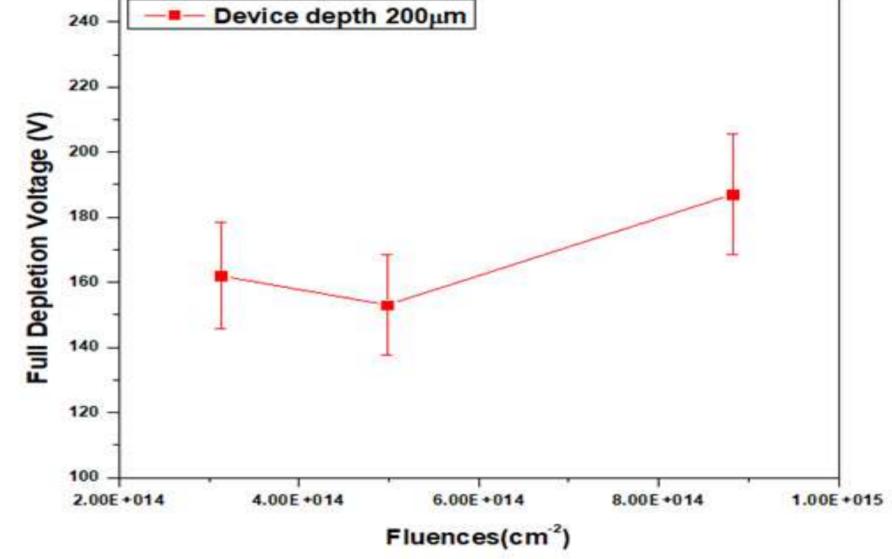
11 T			
1			

>Using multiple field guard rings structure on outer surface of the detector and by cooling the detector system in the CMS experiment up to -20°C to -30°C we can control the increased leakage current.


Extrapolated V_{fd} for thick (300 μ m) and thin (200 μ m) in mixed irradiated p-MCz Si Strip Detector

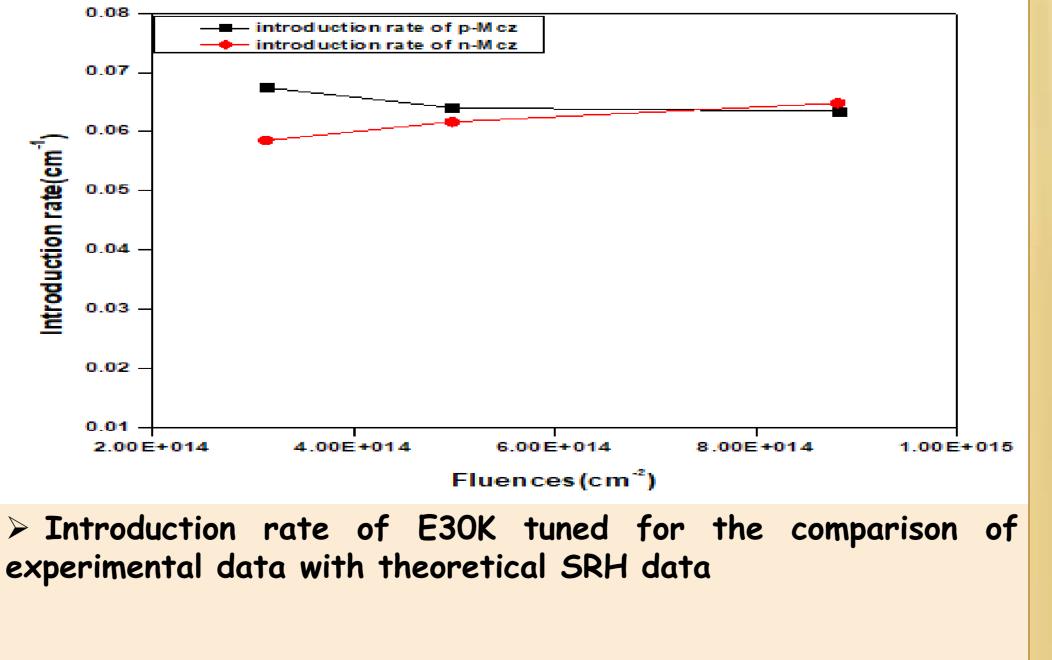
> The extrapolated value of V_{fd} is nearly 1300V at a fluence 4.5x10¹⁵ for the 300µm mixed irradiated detector

> In 200 μ m thin mixed irradiated p-MCz Si strip detector the V_{fd} is around 500 V


Wn

Cross-section of the 0.0625 cm² x 300µm p-MCz Si PAD detector model used in the present study for SRH/ calculations and TCAD device simulation

>MCz-p Si pad detector irradiated with mixed irradiation proton and neutron mixed irradiated model [1-3]


Table.1 List of Physical Parameters					
S.No.	Physical parameters	Values			
1.	Doping concentration (N _D)	2.87 x10 ¹² cm ⁻³			
2.	Oxide thickness (t _{ox})	0.5 µm			
3.	Junction Depth (X _j)	1 µm			
4.	Guard ring spacing (GS)	10 µm			
5.	Guard ring width (GW)	100 µm			
6.	Device depth (Wn)	300 µm			

> Damage accumulated at higher mixed fluences (>4.96 x 10¹⁴ cm⁻²) in p-MCz Si PAD detector

>The V_{fd} for thin p-MCz Si strip detector almost 50% less (< 200V) as compare to V_{fd} of 300 μ m thick p-MCz Si PAD detector for the same equivalent fluence

Comparison of Introduction rate E (30K) in Mixed Irradiated n-MCz [4] and p-MCz Si PAD Detector

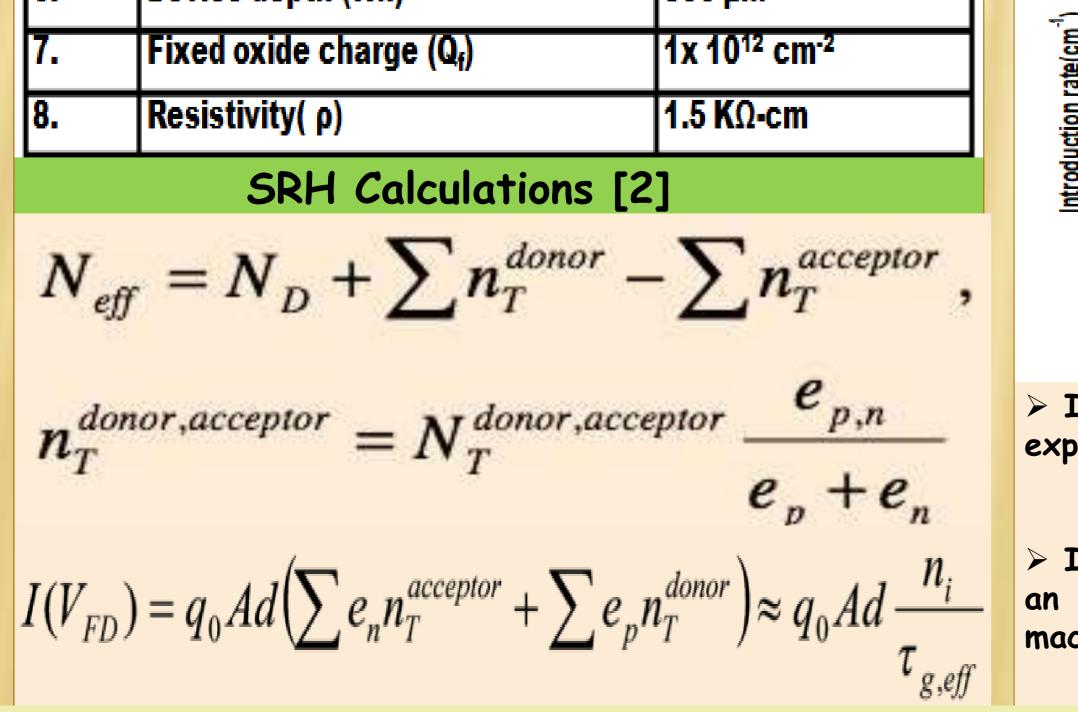
Conclusions

First time within the detector consortium in the world, we have proposed a four level deep-trap mixed irradiation damage model for the p-MCz Si strip detector
Good agreement in experimental and SRH value of Full depletion voltage observed

Introduction rate of E30 K extracted from our mixed irradiated radiation damage model

The V_{fd} is the main macroscopic parameter that can determine the space charge behavior of the mixed irradiated detectors and <500V V_{fd} observed for 200 micron p-MCz Si strip detector for the mixed irradiated fluence of 4.5×10^{15} cm⁻²

Leakage current increases with fluences at 297 K as per
[4]


Acknowledgements

Thanks to DST, Govt. of India for the financial support to one of our inspire fellow and CMS collaborators for the suggestions and comments on my present work

References

1. G. Kramberger, V. Cindro, I. Dolenc, I. Mandic, M. Mikuz, M. Zavrtanik, "Performance of silicon pad

> Introduction rate of E(30K) in n-MCz or in p-MCz Si plays an important role and that can be a key trap to explain the macroscopic performance of the n/p-MCz pad detector detectors after mixed irradiations with neutrons and fast charged hadrons", Nucl. Instr. Methods Phys.Res. A , 609 (2009) 142-148.

- Ajay.K. Srivastva, "Si Detectors and Characterization for HEP and Photon Science Experiment: How to Design Detectors using TCAD Device Simulation", Springer Nature Switzerland AG, Switzerland, ISBN:978-3-030-19530-4, 2019.
- 3. CMS collaboration, "1-D plot covering CMS tracker, showing FLUKA simulated 1 MeV neutron equivalent in Silicon including contributions from various particle types", CMS-DP-2015-02.
- A. Sharma, N.Saini, S.Patyal, B.Kaur, A.K. Srivastava, "Performance characteristics of mixed Irradiated n-MCz thin Si microstrip detector for the HL-LHC experiments", arXiv:2103.02318v1, 2021.

PSD12 2020- The 12th International Conference on Position Sensitive Detectors, 12-17 September, 2021, University of Birmingham, UK.