AGIPD systems for the European XFEL, development and upgrades

A. Allahgholi¹, J. Becker¹, A. Delfs¹, R. Dinapoli², P. Göttlicher¹, H. Graafsma^{1,5}, D. Greiffenberg², H. Hirsemann¹, S. Jack¹, <u>A. Klujev¹</u>, H. Krueger⁴, M. Kuhn¹, S. Lange¹, T. Laurus¹, A. Marras¹, D. Mezza², A. Mozzanica², J. Poehlsen¹, S. Rah⁶, B. Schmitt², J. Schwandt³, O. Shefer-Shalev¹, I. Sheviakov¹, X. Shi², S. Stern¹, U. Trunk¹, M. Zimmer¹ 1 – Deutsches Elektronen-Synchrotron, 2 – Paul Scherrer Institute, 3 – Universität Hamburg, 4 – Universität Bonn, 5 – Mid Sweden University, 6 – Pohang Accelerator Laboratory

The <u>Adaptive Gain Integrating Pixel Detector</u>

AGIPD ASIC: Pixel layout (left) and block diagram showing the

Key Parameters

Operating principle	Charge integrating	
Energy range	3 keV-18 keV	
Frame rate	> 4.5 MHz (burst)	
Memory depth	352 frames	
Pixel size	(200 μm)²	
Pixel technology	Hybrid Pixel Technology	
Total detector size	Variable (modular)	
Module size	2.5 10.5 cm ² , 128 512 pixels	
Dynamic range	1 to 10⁴ photons/pixel/frame at 12.4 keV	
Dynamic gain switching	Yes (3 gains)	
Veto/Trigger	Yes (overwriting of frame RAM)	
Single Photon sensitivity	Yes (in high gain)	

- Preamplifier with adaptive gain by insertion of additional feedback capacitors to lower sensitivity and increase dynamic range once a defined threshold is crossed
- Correlated Double Sampling (CDS) stage to remove reset noise and reduce low frequency noise
- Analogue memory, which can store 352 images
- Read out of stored signals are through the pixel buffer, column buffer and off-chip driver in between the

analogue readout chain (top)

bunch trains (≈25 ms out of 99 ms)

2nd Generation AGIPD for the European XFEL

New Megapixel AGIPD Detectors

- **SFX** User Consortium, SPB/SFX instrument: AGIPD4Mpix HIBEF User Consortium, HED instrument: AGIPD1Mpix,
- **AGIPD 4M Mechanics**
- In-vacuum cooling system of frontend-modules and readout board
- In-vacuum longitudinal motion to vary sample-detector-distance
- AGIPD1M for HIBEF

"AGIPD Mini-Half" – 2nd Generation Prototype

Integrate small system into XFEL's controls, timing and DAQ system -> feedback to AGIPD firmware

Initially with Si-sensors, later with HighZ sensors (GaAs/CdTe/CdZnTe for higher photon energies) Assembly & Commissioning of both systems in Q3+4 2022

Read-out electronics

- 2 x 8 FEMs
- fixed horizontal gap
- AGIPD4M for SFX
 - 4 x 14 FEMs divided into 2 halves
 - adjustable vertical gap and Z-position
- Commission and characterize 2nd Gen AGIPD system with XFEL
- Characterize AGIPD1.2 with XFEL
- Provide first MHz-diffraction capability for HED/HIBEF until delivery of final system

- AGIPD Mini-Half System, HED/HIBEF
- 8 Readout Boards, 8 front-end modules = 500kpix
- 4x AGIPD1.1, 4x AGIPD 1.2 FEMs
- 1 Receiver Board without interlock functionality, link to **EuXFEL Clock&Control**

0.2

References

7000

[1] M. Altarelli et al., doi:10.1080/08940880601064968.

[2] X. Shi et al., Challenges in chip design for the AGIPD detector, doi:10.1016/j.nima.2010.05.038 [3] U. Trunk et al., AGIPD - The Adaptive Gain Integrating Pixel Detector for the European XFEL. Development and Status, doi:10.1109/NSSMIC.2011.6154392.

[4] J. Becker et al., Performance tests of an AGIPD 0.4 assembly at the beamline P10 of PETRA III, doi:10.1088/1748-0221/8/06/P06007

Experiment Nov 2020: Single-train MHz-pulse-resolved diffraction data from X-ray (and laser-) heated Platinum in diamond-anvil cells, intra-train thermal peak shift and melting

HighZ sensors & ecAGIPD (AGIPD1.3) ASIC

- Higher photon energies (>12keV) require sensor materials different (heavier) than Si for better absorption: HighZ sensors, e.g., GaAs, CdTe, CdZnTe
- HighZ sensors: almost always electrons are the better charge carriers,
- requires new ASIC as the existing AGIPD1.1 and 1.2 are hole-collecting only
- Electron-collecting AGIPD0.6 MPW test chip (16x16 pixels) is currently tested showing expected functionality and performance
- AGIPD1.3 full ASIC is ready for tape-out

AGIPD0.6

[5] A. Allahgoli et al., The Adaptive Gain Integrating Pixel Detector AGIPD, J. Instrum. (2015) IWoRiD conference proceedings [6] M. O. Wiedorn et al., Megahertz serial crystallography, Nature Communications 9(1), 4025 (2018), doi:10.1038/s41467-018-06156-7 [7] M.L. Grünbein et al., Megahertz data collection from protein microcrystals at an X-ray free-electron laser, Nature Communications 9(1) 3487 (2018)

