
Upgrade of the ATLAS Muon Spectrometer with highresolution Drift Tube Chamber (sMDT) for LHC Run-3

E.Voevodina¹ on behalf of ATLAS Muon Collaboration ¹ Max-Planck-Institute for Physics, Munich (Germany)

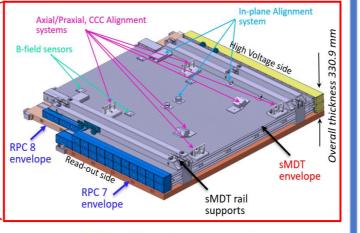
2500

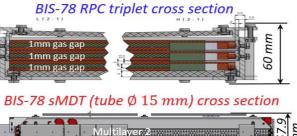
New ATLAS Muon Stations for LHC Run-3 (2022/24) sMDT Design & Improvements

Layout - 8 new muon stations: 16 new Resistive Plate (RPC) muon trigger chambers in combination with 8 new small Monitored Drift Tube (sMDT) precision muon tracking detectors

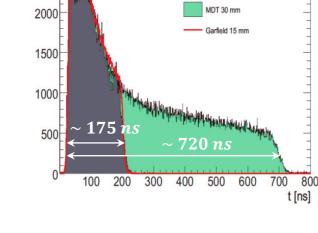
> Motivation:

sMDT + RPC muon stations will reinforce the fake muon rejection and the selectivity of the muon trigger in the transition region between the ATLAS barrel and endcap $1.0 < |\eta| < 1.3$ for Phase-I (-II)

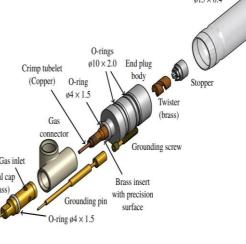

BIS78 pilot project for the Phase-II upgrade of the barrel inner layer:


Aim is to validate the final mechanical installation procedure, verify the services previously installed in the ATLAS cavern, and to obtain early feedback about the front-end electronics response and detection performance.

QA/QC Protocol @ MPI Munich


sMDT - Single Chamber 2730 V in *Ar*: *C*0₂ @ 3 bar

- **Gas Leak Test:**


Drift Time Spectrum

sMDT baseline parameters			
	Properties	MDT	sMDT
	Tube Diameter	30 mm	15 mm
	Wire & Tube Wall	50 μm W-Re & 400 μm	
	Number of tube layers	4	8
	Gas Mixture	<i>Ar</i> : <i>CO</i> ₂ (93:7) @ 3 bar	
	HV working point	3070 V	2730 V
00	Gas gain	$2 imes 10^4$	
	Single Tube Max. Drift time	~ 720 ns	~ 175 <i>ns</i>
	Single tube Space resol. w/o background	83 ± 2 μm	106±2μm

New chamber design similar to the current ATLAS MDT

Improvements:

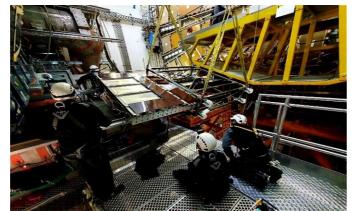
- rate capability factor of 10 greater than current MDT detectors, and 8 times less background detector occupancy
- 4 times lower electronics dead time \checkmark (= max. drift time)
- \checkmark 2 times more tube layers within the same signal can detector volume allowing for additional increase in the muon tracking efficiency
- No ageing effect expected at the \checkmark integrated luminosity of HL-LHC (even up to 9 C/cm)

Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)

Design challenge: 4 times denser gas and electrical connection

Detector Commissioning @ CERN BB5 facility


sMDT - Single Chamber 2730 V in Ar: C0₂ @ 3 bar

BIS78 Module Installation @ P1

- ✓ Installation of 8 Muon stations for the A-side of Inner Barrel Small sectors completed in Jan. 2021
- Commissioning phase is completed
- sMDT subsystem has been included in the cosmic ray data-taking campaign

PSD12: The 12th International Conference on Position Sensitive Detectors, 13-17 Sep. 2021 University of Birmingham (United Kingdom)

Summary

- Max Planck Institute for Physics in Munich (MPI) has built 16 new BIS78 sMDT for the ATLAS experiment (~11 000 drift tubes => 16 detectors - from 2017 to 2019).
- \checkmark 16/16 sMDT detectors have been fully validated following a strict quality control protocol at MPI and passed the acceptance tests at CERN.
- 8/16 BIS78 Muon station (A-side) successfully installed in ATLAS from Sept. 2020 to Jan. 2021 (while the rest will be installed during the Long Shutdown-3 of LHC).
- A new sMDT subsystem has been commissioned! \checkmark
- All detectors had been integrated into ATLAS DCS/DAQ/DQ systems. \checkmark
- \checkmark The recorded dataset with all sMDT BIS7A data from ATLAS combined run has been completed.

voevodin@mpp.mpg.de