

HI

CHANDIGARH

UNIVERSITY

TCAD Simulation and Design Optimization of Radiation Hard n-MCz and n-Fz Si Microstrip Detector for the HL-LHC

Balwinder Kaur, Shilpa Patyal, Nitu Saini, Puspita Chatterji, Ajay K. Srivastava. Department of Physics, University Institute of Sciences, Chandigarh University,

Gharuan-Mohali, Punjab, 140413, India.

Abstract

A radiation hard Si detector is used in the new CMS tracker detector at HL-LHC. It has been observed that n-MCz and n-Fz Si as a material can be used for the Si microstrip detector. The detector design for this material should be simulated and optimized to get high CCE. In order to understand the charge collection behavior of the n-MCz/n-Fz Si detector, it is required to simulate and compare the radiation damage effects in the mixed irradiated n-MCz Si and proton irradiated n-Fz Si microstrip detector equipped with metal overhang and multiple guard rings.

In this paper,we have done analysis and optimization of the radiation hard n-MCz Si/n-Fz Si strip detector design for the HL-LHC experiment in order to get high CCE.

n-FZ Si Strip Detector[2]						
Defect	Туре	Energy	<i>g_{int}</i> (cm ⁻¹)	σ _n (cm ²)	σ _p (cm ²)	
E30K	Donor	E_c-0.1 eV	0.0497	2.300E-14	2.920E-16	
V ₃	Acceptor	E _c -0.458 eV	0.6447	2.551E-14	1.511E-13	
I _p	Donor	E _c -0.545 eV	0.4335	4.478E-15	6.709E-15	
H220	Donor	E _v +0.48 eV	0.5978	4.166E-15	1.965E-16	
CiOi	Donor	E _v +0.36 eV	0.3780	3.230E-17	2.036E-14	

Hamburg Penta Trap Model (HPTM) for Proton Irradiation in

Four Level Deep Trap Mixed Irradiated Radiation Damage Model for n-MCz Si Strip Detector [3]

> Used Hamburg Penta Trap model (HPTM) for proton radiation damage effect [2] in n-Fz and Mixed-irradiated n-MCz model in thin/thick Si strip detector in the present analysis.

UFull depletion voltage as a function of the Fluence in Proton Irradiated n-Fz Thick Si Strip Detector

nFz-proton irradiated

ULeakage Current as a function of the Fluence in Proton Irradiated n-Fz thin Si Strip Detector at two Temperatures

Leakage current increases with fluences at 293 (RT), and 297 K (Rt+4K) that shows the experimental results a per (3)

ULeakage Current as a Function of the Fluence in Mixed Irradiated n-MCz Thin Si Strip Detector at two Temperatures

n-Fz/n-MCz Silicon (Si) Strip Detector Model

Cross-section of the 0.0625 $cm^2 \times 200/300\mu m n-Fz/n \succ$ MCz Si strip detector /PAD diodes used in the present study for SRH calculations and TCAD device simulation

□Multiple Guard Rings (MGR) Layout for t n-MCz Silicon Strip Detector (Proposed)

> Hamburg Penta Trap Model (HPTM) model can reproduce the experimental data in n in p, here we used in 300 µm n-Fz proton irradiated Si strip detector as shown in (1), V_{fd} estimated from SRH calculations (2) and decreases with increasing doping concentration

>Significant increase in V_{fd} with the proton radiation fleunces (Φeq , n (fluence), equivalent to 1 MeV neutron) in n-Fz detector using HPTM model

UFull Depletion Voltage as a function of the Fluence in Proton Irradiated n-Fz Thin Si Strip Detector

>HPTM model can used to get V_{fd} in 200 µm n-Fz proton irradiated Si strip

Leakage current increases with fluences at 293 (RT) , and 297 K (RT+4K) that shows the experimental results as per reference (3) >Less Leakage current showed in the nMcz Si strip detector than n Fz strip detector at two temperatures (293 K, 297 K)

TCAD Simulation Results

>Used physical Model in Silvaco ATLAS-SRH Recombination, Doping dependent mobility, Impact ionization, Interface, Band gap narrowing, High field, Band to band tunneling, Trap Assisted tunneling (Hurks model),

Electric Field of Mixed Irradiated n-MCz Thin Si Strip for 3.13 x 101⁴ cm⁻²

> Low E-field obtained in the base region of the detector, and E-field gutter observed in the Centre of the detector (X=40 μ m, cut X=2.3 micron)

Electric Field of Mixed Irradiated n-MCz Thin Si Strip Detector for 4.98x10¹⁴ cm⁻²

70

n+

Table.1 List of Physical Parameters

S.NO.	Physical parameters	Values
1.	Doping concentration (N _D)	5 x10 ¹² cm ⁻³
2.	Oxide +nitride thickness (t _{ox})	0.3+.05 µm, nitride added to prevent physical damage on the interface surface
3.	Junction Depth (X _j)	1 µm
4.	Device depth (W _n)	200/300 µm
5.	Fixed oxide charge (Q _f)	1.5x 10 ¹² cm ⁻²

SRH Calculations [1]

detector, 50% less V_{fd} have been obtained in 200 µm n-Fz proton irradiated Si strip detector than 300 µm strip detector irradiated by protons

>Significant increase in V_{fd} using HPTM observed using SRH calculations in the proton irradiated detector by 24 GeV/c protons, HPTM needs to tune the parameters to reproduce the macroscopic measurements for the good agreement in the experimental data and simulation data on n Fz Strip detector/diodes too using Silvaco ATLAS TCAD

>For the 5×10^{12} cm⁻³ doping of n-Fz bulk, less full depletion voltage (705V) obtained for the fluence of 2×10^{14} cm⁻² than other fluences

UFull Depletion Voltage as a function of the Fluence in Mixed Irradiated n-MCz Thick Si Strip Detector

 \succ V_{fd} increases with the mixed irradiated fluences for the three doping concentrations in thick n-MCz Si strip detector, less full depletion voltage obtained than other n-Fz proton radiated detectors , less V_{fd} observed due to the compensation of the deep traps in n-MCz as compared to n-Fz Si strip detector

□ Full Depletion Voltage as a function of the Fluence in Mixed Irradiated n-MCz Thin Si Strip Detector

> E-field increases at curvature of junction and slightly increase at E-field gutter, X=40 µm

Electric Field of Mixed Irradiated n-MCz Thin Si Strip Detector for 8.82 x10¹⁴ cm⁻²

> With an increasing mixed doses, E-field at curvature of junction saturates and at E-field gutter, X=40 µm too >E-field gutter can be cause of trapping of charge carrier

Electric Field of Proton Irradiated n-Fz Thin Si Strip Detector for 2x10¹⁴ cm⁻²

 $>V_{fd}$ increases with the mixed irradiated fluences for the three doping concentrations in thin n-MCz Si strip detector too, less full depletion voltage obtained than 300 μ m Mcz Si strip detectors , less V_{fd} observed in the 1x10¹² cm⁻³ n-MCz Si strip detector, although for comparison and isolation in between strips (wth n⁺ in p detector) of the effect on the macroscopic performance and E-field distribution, have taken high doping 5×10^{12} cm⁻³ in the n-MCz strip detector design that is giving < 300 V full depletion voltage.

Thin n-MCz Si strip detector can be operated at an applied bias of 500

> Less E-field at curvature of junction and in the base region of the detector, and also less E-field at E-field gutter than mixed irradiated n-MCz Si Strip detector

> High CCE expected in thin n-MCz than n-Fz Si strip detector, traps modifying E-field in the base region of the detector

Conclusion

>SRH calculations explained the full depletion voltage and leakage current in n-MCz and n-Fz Si strip detector, less V_{fd} observed in thin MCz than thin Fz

> 200 µm n-MCz thin Si microstrip detector as design showed, high CCE expected than n-Fz, MGR proposed for the design – nMCz Si strip detector

References

- Ajay K. Srivastava, "Si Detectors and Characterization for HEP and Photon Science Experiment: How to Design Detectors using TCAD Device Simulation", Springer Nature Switzerland AG, Switzerland, ISBN:978-3-030-19530-4, 2019.
- 2. J.Schwant et al., "A new model for the TCAD simulation of the silicon damage by high fluence proton irradiation", Arxiv:1904. 10234v1, 2019.
- A.Sharma, N.Saini, S.Patyal, B.Kaur, A.K. Srivastava, "Performance characteristics of mixed Irradiated n-MCz thin Si microstrip detector for the HL-LHC experiments", arXiv: 2103.02318v1, 2021.

The 12th International Conference on Position Sensitive Detectors, 12-17 September, 2021, University of Birmingham, UK. **PSD12** 2