Design Parameters of the new AD Electron Cooler

Lars Joergensen, Gerard Tranquille

Why a new electron cooler?

Present cooler is more than 40 years old Missing spares – gun, collector solenoids & toroid Any intervention is time consuming and requires a lot of resources

Build a new state-of-the-art electron cooler incorporating the latest ideas for :

- enhancing the cooling performance,
- improving the vacuum in the cooling section,
- easier intervention on the cooler,

and above all address the spares situation.

Parameters

Maximum energy:	80 keV
Electron beam energy:	68.125 keV
Antiproton beam momentum:	500 MeV/c
Accelerating voltage:	68.808 kV
Relativistic beta:	0.471
Maximum electron current:	3.5 A
Cathode radius:	1.25 cm
Magnetic field in gun:	2400 G
Magnetic field in drift:	600 G
Expansion factor:	2
Beam radius in drift:	2.5 cm
N _e	7.9 x 10 ¹³ m ⁻³
Drift solenoid length:	1.5 m
Cooler orientation:	horizontal
Vacuum chamber diameter:	140 mm

	<u>300 MeV/c</u>	<u>100 MeV/c</u>	
Electron energy / keV	26.2	3.05	
Electron Current / A	2.5	0.1	
Electron density / m ⁻³	8.7 × 10 ¹³	1.0×10^{13}	
Energy dumped at coll. / kW	65.5	0.3	
Magnetic field / Gauss	590		
Electron beam diam. / mm	50	50	
Cooling time / s	16	15	
Cooling length / m	1.5		
e _x , e _y / p mm mrad	1.6 / 2.4	<1 / <1	
Dp/p	~2 × 10 ⁻³	<1 × 10 ⁻³	

What will be different?

- \Box Cooling at a higher antiproton momentum (\leq 500 MeV/c)
- Horizontal orientation
- □ Electrostatic plates in each toroid.
- NEG coated vacuum chambers.
- Fast ramping of the expansion solenoid to adapt the electron beam size during cooling.
- New solenoid design using pancakes and iron bars for the return-flux.
- Compact orbit correctors (as used on ELENA).

During the AD deceleration the main losses occur at 300 MeV/c

- x6.6 adiabatic blow-up between FT2 and FT3
- Electron cooling performance relies on good stochastic cooling on FT2
- Larger emittances on FT3 = longer cooling times, tail formation, more critical alignment

By cooling at 500 MeV/c the blow-up is only a factor 4 Shorter deceleration time:

- Better control of the tune and closed orbit
- Avoid extra emittance blow-up due to resonance crossing

Intensity and d	p/p values
Np (3.5 GeV/c)	2.77 e7 100 %
Np (2 GeV/c)	2.77 e7 100 %
Np (300 MeV/c)	2.32 e7 83 %
Np (100 MeV/c ramp)	2.41 e7 87 %
Np (100 MeV/c end)	2.2 e7 79 %
DETFA7049	2.01 e7 72 %
dp/p (3.5 GeV/c)	21.929 0.668
dp/p(2GeV/c)	1.069 0. 225
dp/p (300MeV/c)	1.608 0.034
dp/p (100 MeV/c)	0.407 0.613

Transverse field in AD ecooler Drift solenoid is $\sim 3 \times 10^{-3}$

Vertical orientation (present situation)

Horizontal orientation (proposal)

Cooler more accessible. No need for working at heights.

Courtesy of Didier Steyaert & Yannick Coutron

New solenoid design (pancake structure)

- Fine adjustment of magnetic field possible
- Only a handful of spare coils will be needed
- Easier mounting
- Lighter structure

<u>Transverse Magnetic Field Measurements in the LEIR Cooler</u> (compass)

350

Beam expansion

- Needed for:
 - Adapting the electron beam size to the injected beam size for optimum cooling.

$$B_{\prime\prime\prime}r^2 = const \Rightarrow r = r_o \sqrt{\frac{B_o}{B}}$$
 $B_o=0.24T, B=0.06T, r_o=12.5mm => r=25mm$

- Reducing the magnetic field in the toroids, thus reducing the closed orbit distortion.

- Reducing the transverse thermal temperature of the electron beam.

$$\frac{E_t}{B_{//}} = const \Longrightarrow E = E_o \frac{B}{B_o} \qquad B_o=0.24T, B=0.06T, E_o=100 \text{ meV} => E=25 \text{ meV}$$

New electron gun design (courtesy of Alexander Pikin)

