Budget, Resources & Planning

Gerard Tranquille

Budget

2.427 MCHF was allocated to this project in 2015.

Some money has already been spent, mainly on preparing the test stand (bld 236).

Job opened with EN/MME to initiate integration studies. Will continue for the collector......

Spending profile					
≤2018	2019	2020	2021	2022	
118 kCHF	50 kCHF	400 kCHF	1200 kCHF	659 kCHF	actual
130 kCHF	100 kCHF	500 kCHF	1200 kCHF	497 kCHF	updated

Total budget : 2.427 MCHF			
Design, drawings	250 kCHF	>4500 hours	
Magnetic system	1000 kCHF	Incl. spare coils	
Raw materials & production	750 kCHF	Vacuum chambers, BPM	
Vacuum	50 kCHF	NEG (coating, strips), acceptance tests	
HT platform	100 kCHF		
Cabling	50 kCHF		
Misc.	227 kCHF		

Resources

We would like to build the new cooler in the same way that the ELENA electron cooler was made: Magnetic system -> industry Gun, collector, vacuum elements... -> in-house

BI-EA has >35 years experience in designing, building, commissioning and operating electron coolers. One electro-mechanical technician One electronics technical engineer Two applied physicists

•••••

Requested from other sections/groups:

BE/BI/BP: BPM EN/MME: Design, production drawings TE/VSC: Specification of vacuum system, NEG coating, acceptance testing TE/MSC: Specification of magnetic system, magnetic measurements

Tentative Planning

- 2019:Design of new collector. Produce drawings. Start production (main workshop availability?).GT,JC,EN-MMESpecification of the magnetic system. Produce tender documents. Market survey (?).GT,LJ,TE-MSC,CERN-FIFinish integration study (incl. magnets reshuffle).Ecool & AD teams,EN-MMEFinalise gun study and design.AP,AR,GT,EN-MME
- 2020: Call for tender for the magnetic system. FC(?)
 Production of the new collector (ready for autumn).
 Produce drawings for the electron gun. Start production (?).
 Design of the vacuum system. Drawings ready for end of year.
 Test new collector on ecool test stand.
- 2021: Install new collector on AD. Exchange electron gun. Ready for start-up.Magnets production.Production of the vacuum system. Chamber coating. Acceptance tests.

- Main workshop EN-MME Ecool team,EN-MME,TE-VSC Ecool team
- Ecool team,TE-VSC Follow-up with TE-MSC TE-VSC
- 2022: Continue production and acceptance tests/measurements of magnets and vacuum system. TE-MSC & VSC Mounting in bld 236 (ecool test stand)
- 2023: First tests of the new cooler.

Installation & commissioning

The new AD electron cooler could be ready for installation during the 2023/2024 shutdown. Depends on how much can be done in preceding shutdowns (21/22, 22/23):

- Install HT platform & cable pulling
- Reshuffle ring magnets

If not we will have to wait until LS3 for the complete installation of the cooler and the modifications to the AD ring.

Commissioning:

run the new cooler with the present AD cycle i.e. cooling @ 300 MeV/c and 100 Me/c during dedicated MD time insert the 500 MeV/c plateau and perform the cooler commissioning