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CP Violation

๏ There is a hint from T2K that δCP is not 0/π 

๏ Should we trust this result?
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Results shown are for with reactor constraint; T2K only in back up



Disappearance Sector

๏ NOvA results prefer 
non-maximal mixing 

๏ Very narrow result 
in ∆m232 

๏ Should we trust this 
result?
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Prefer NH at 1.8σ  
(T2K similar)



Oscillation Experiments 
in a Nutshell
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ν Near 
Detector

Far Detector

102-3 of km

How many να here?

How many νβ here?
N	=	Φ	×	σ	×	ε	×	P(να→νβ)



Why Is This Hard?
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Non-perturbative!  
Ancient data! 
Axial currents! 

Effective parameters! 
A-scaling is hard!



Oscillation Experiments 
in a Nutshell
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ν Near 
Detector

Far Detector

102-3 of km

How many να here?

How many νβ here?Nf	=	Φf	×	σf	×	εf	×	P(να→νβ)
Nn	=	Φn	×	σn	×	εn



Neutrino Beam
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QCD Lives Here



Hadronic Uncertainties
๏ Long baseline 

experiments use 
associated hadronic 
production experiments 
(e.g. NA61/SHINE) to 
constrain pion/kaon 
production 

๏ Still need to extrapolate 
from phase space of 
associated experiments 
to full beam line
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Beam Uncertainties
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1. Proton beam measurement

3. Horn and beam alignment

5. Beam direction
2. Hadron production

4. Horn current and field
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ν-N Cross Section Model
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Uncertainties come from underlying model 
parameters and normalizations

Deep Inelastic Scattering

NIWG 2015 cross sections as a function of E‹
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Mode vs Topology
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P0D ECal Electromagnetic 
Calorimeter (ECal)

π0 detector 
(P0D)

UA1 Magnet

Time Projection  
Chambers (TPCs)

Fine Grained 
 Detectors (FGDs)

EC
al

T2K Off-Axis Near Detector
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Beam

Interaction in FGD1

Primary Interaction Material: Carbon 
Secondary Interaction Materials: 

Oxygen, Lead, Brass, Argon

Side Muon Range Detector

Beam

Interaction in P0D

Interaction in ECal

Strategy: 
•Parameterize underlying models 
•Select data samples to optimize 

constraints 
•Propagate uncertainties through 

parameters 
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ND280 ν-mode samples

๏ Three samples allow sensitivity to different beam energies and cross 
section interaction modes 

๏ High statistics in neutrino mode provide strong constraints
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Stacked histograms are MC  
before data fit

FGD1 samples shown; 
FGD2 similar

CC0π

CC1π

CCother



CC0π Samples

๏ Clear that data is in better agreement after the analysis 

๏ Adjustment comes through all the modes 

๏ T2K is no longer statistically limited at the near detector!
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Before analysis After analysis



Propagation of Uncertainty
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‘Fake Data’ Analyses

๏ Generate ‘fake 
data’ from 
alternative models 

๏ Perform full analysis 

๏ Example: Binding 
energy in nuclei 

๏ Check if the analysis 
is sensitive to this
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NOvA ND
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Muon catcherScintillator units

Primary Interaction Material: Carbon 



NOvA ND
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Strategy: 
•Unfold ND data to predict true energy spectrum 
•Apply Far/Near ratio and oscillations 
•Fold back to reconstructed energy 
•Systematics are applied as variations on the true-reconstructed matrices



NOvA ND

๏ Split into bins of hadronic 
energy 

๏ This reflects different 
energy resolutions
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Propagation of Uncertainty

๏ Statistical 
uncertainty still 
dominates for 
NOvA 

๏ Nevertheless, as 
datasets increase, 
this will become 
increasingly 
important
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Problems: Phase Space

๏ Near detectors 
typically have a 
restricted phase space 
relative to their far 
detectors 

๏ Uncertainties in Q2 can 
badly affect this!
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Problems: Energy Spectrum

๏ Near and far do not see identical fluxes 

๏ Different modes have different energy resolution/biases 

๏ If this is wrong—can produce biases in osc. parameters
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Problem: Model Degeneracy

๏ Example: can shift 
energy from protons 
to neutrons and the 
ND spectrum looks 
fine via other model 
compensations 

๏ Impact on oscillation 
contours is large
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Next Generation

๏ Systematic uncertainties have a huge effect on 
the sensitivity of future LBL experiments 

๏ We have to do much better!
�26

HK



New Concepts: PRISM

๏ Use the off-axis effect to 
generate different energy 
neutrino beams 

๏ Systematics are low ‘bin-to-bin’
�27



New Concepts: PRISM

๏ Can construct 
‘monoenergetic’ 
beams 

๏ Can construct ‘pre-
oscillated’ beams 

๏ Both HK and DUNE 
have plans for a 
PRISM detector
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Imperial College  
London

Morgan O. 
WasckoNeutrino 20182018 / 06 / 04

• Replace (most of) P0D with Scintillator Detector  
+ 2 High-Angle TPCs + TOF
• Improve acceptance for large angle tracks

• Keep current “tracker” [2 FGDs + 3 TPCs] (& upstream part of P0D)  
as well as ECal, magnet & SMRD 

• For keeping continuity and forward acceptance
11

Design of ND280 upgrade

11

・P0D will be replaced with Scintillator detector, High-Angle TPCs  
　& TOF counters keeping current 2 FGDs, 3 TPCs & ECAL

TOF counters

Scintillator detector
High-Angle TPCs

ν beam

ND280 upgrade configuration

ND280 upgrade
•T2K phase 2 goal: reduce systematics 

to ~4%

•Requirements for upgraded detector:
•Full polar angle acceptance
•Fiducial mass of a few tons
•High efficiency for short tracks
•Good timing information to 

determine track direction

•Strong collaboration of experts from 
Europe (incl. CERN neutrino group), 
Japan, & USA

•Submitted proposal to CERN SPSC
•supported as a Neutrino Platform 

project, http://cds.cern.ch/record/
2299599

•TDR expected by the end of 2018

•Aiming for installation in 2021
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Albert De Roeck 
(CERN EP-NU leader) 
visiting J-PARC CCR  

with T2K 
spokespersonsMore information:

F Sanchez’s talk later today see posters by:
J, Łagoda,  #120, Wed
Y. Kudenko, #121, Wed

New Concepts: Low Threshold

๏ Upgrade to T2K 
ND280 to increase 
efficiency at high 
angles 

๏ New detector target 
with much finer 
granularity
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New Concepts: Low Threshold

๏ Resolution only gets 
us so far—to do better, 
need lower density 

๏ Proposal: High 
pressure gas TPC 

๏ Begin to distinguish 
low energy hadrons—
better mode 
determination, model 
constraint
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New Concepts: Low Threshold

๏ DUNE plans to build 
a HPgTPC a part of 
the near detector 
complex  

๏ Prototype detectors 
are underway both 
at FNAL and RHUL
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New Concepts: Beam

๏ Major problem is 
the fact that near 
detectors measure 
flux times cross 
section  

๏ Separation of the 
two is desirable! 

๏ Enter electron 
scattering!
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New Concepts: Beam
๏ MINERvA has show a 

proof-of-concept 
analysis of this 
technique 

๏ Difficulty lies in 
separating events from 
intrinsic beam nue, tiny 
cross section 

๏ Future experiments 
thinking about ways to 
include this 
measurement in NDs
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Conclusions
๏ The difficulty of QCD modeling 

produces complex challenges for 
neutrino physics 

๏ The current generation of near detectors 
do a great job for their experiments 

๏ Novel techniques and analyses are 
needed to drive the next generation of 
experiments

�34


