

Cheryl Patrick, UCL Joint IoP APP/HEPP Conference 2019

1,000,000,002 matter particles

1,000,000,000 antimatter particles

beta decay

Cheryl Patrick, UCL

double-beta decay

Diagram - E. Falk

	18		
16	17	2 He 4.0026	
8 O 5.999	9 F 18.998	10 Ne 20.180	
16 S 2.06	17 Cl 35.45	18 Ar 39.948	
2Se	35 Br 79.904	36 Kr 83.798	
0	53		
³⁰ Te	I 126.90	¹³⁶ Xe	
84 Po 209)	I 126.90 85 At (210)	¹³⁶ Xe ⁸⁶ Rn (222)	
80 Te 84 Po 209) 116 Lv (293)	I 126.90 85 At (210) 117 Ts (294)	⁸⁶ Rn (222) ¹¹⁸ Og (294)	
84 Po 209) 116 Lv 293)	I 126.90 85 At (210) 117 Ts (294)	⁸⁶ Rn (222) 118 Og (294)	

Г т	Yb	Lu
58.93	173.05	174.97
101	102	103
Md	No	Lr
258)	(259)	(262)

Neutrinoless double-beta decay : the smoking gun for Majorana

Cheryl Patrick, UCL

Ov $\beta\beta$ rate = $\frac{1}{T_{1/2}^{0\nu\beta\beta}} = G_{0\nu}(Q_{\beta\beta}, Z)|M_{0\nu}|^2 \frac{\langle m_{\beta\beta}\rangle^2}{m_e^2}$ Phase space Nuclear matrix factor element (hard to calculate)

 $0\nu\beta\beta \text{ rate} = \frac{1}{T_{1/2}^{0\nu\beta\beta}} = G_{0\nu}(Q_{\beta\beta}, Z)|M_{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$

$m_{\beta\beta} = c_{12}^2 c_{13}^2 m_{\nu_1} + s_{12}^2 c_{13}^2 m_{\nu_2} e^{i\phi_{12}} + s_{13}^2 m_{\nu_3} e^{i\phi_{13}}$

Cheryl Patrick, UCL

Cheryl Patrick, UCL

Looking for 0vββ

Sum of the **2 electron energies**, as fraction of $\beta\beta$ decay energy

Looking for 0vββ

Sum of the **2 electron energies**, as fraction of $\beta\beta$ decay energy

Looking for 0vββ

Sum of the **2 electron energies**, as fraction of $\beta\beta$ decay energy

"Short" half-life •

$$\frac{1}{T_{1/2}^{0\nu\beta\beta}} = \frac{G_{0\nu}(Q_{\beta\beta},Z)}{|M_{0\nu}|^2} \frac{\langle m_{\beta\beta} \rangle}{m_e^2}$$

- "Short" half-life •
- Lots of isotope •

- "Short" half-life
- Lots of isotope
- (Ultra-) Low backgrounds

Backgrounds include

- 214Bi and 208TI β-emitting daughters of U & Th
- Particular danger from **radon**
- Irreducible **2vββ** background

- High-purity germanium **detector** array is **also ββ source** (⁷⁶Ge)
- Excellent efficiency and resolution: zero background in 0vββ region of interest •
- Future detector: LEGEND •

- Large detectors with **hundreds of kg** of isotope (¹³⁶Xe)
- KamLAND-Zen has current best $0\nu\beta\beta$ half-life /m_{$\beta\beta$} mass limit
- $T_{1/2} > 1.07 \times 10^{26}$ years ($\langle m_{\beta\beta} \rangle < 61-165 \text{ meV}$)
- Future detectors nEXO, KamLAND2 Zen

ope (¹³⁶Xe) e /m_{ββ} mass limit **eV**)

- ¹³⁰Te has 34% natural **abundance**
- TeO₂ crystals at 10mK heat up when decay occurs
- 0.2% energy resolution •
- CUPID adds particle ID

Significant UK involvement

Cheryl Patrick, UCL

SNO+ at Sudbury, Canada

Cheryl Patrick, UCL

6m radius acrylic vessel filled with ^{nat}Te-loaded liquid scintillator

filled cavity

Double Beta Decay

9

Highly economical

• ¹³⁰Te is the most economically scalable **isotope** (high natural abundance); • Liquid scintillator also very economically scalable detector technology! Potential for dramatic scale-up

- ¹³⁰Te is the most economically scalable **isotope** (high natural abundance); • Liquid scintillator also very economically scalable **detector technology**! Potential for dramatic **scale-up**

Cheryl Patrick, UCL

Highly economical

- Allows **sensitivity** above current leading measurement:
 - $T^{1/2}_{0\nu\beta\beta} > 2.1e^{26}$ years ($m_{\beta\beta} < 37-89$ meV) after 5 years of running

Highly economical

• ¹³⁰Te is the most economically scalable **isotope** (high natural abundance); Liquid scintillator also very economically scalable detector technology! Potential for dramatic **scale-up**

Allows **sensitivity** above current leading measurement:

• $T^{1/2}_{0\nu\beta\beta} > 2.1e^{26}$ years ($m_{\beta\beta} < 37-89$ meV) after 5 years of running Phase II could reach 10²⁷ years with the same detector but higher loading

Cheryl Patrick, UCL

Highly economical

• ¹³⁰Te is the most economically scalable **isotope** (high natural abundance); • Liquid scintillator also very economically scalable **detector technology**! Potential for dramatic scale-up Allows **sensitivity** above current leading measurement:

• $T^{1/2}_{0\nu\beta\beta} > 2.1e^{26}$ years ($m_{\beta\beta} < 37-89$ meV) after 5 years of running Phase II could reach 10²⁷ years with the same detector but higher loading Concept originated in UK (Biller & Chen, 2012)

New loading method: Te-butanediol complex dissolves in liquid scintillator SNQ

- Simple **synthesis**
- Single **safe**, distillable chemical
- Low radioactivity levels
- Minimal optical **absorption** ullet
- High light levels at 0.5% ^{nat}Te loading
- Developed in UK!

Natural tellurium is 34% ¹³⁰Te

Detector progress

• Operating with **water** from 2017

PHYSICAL REVIEW D 99, 012012 (2019)

Measurement of the ⁸B solar neutrino flux in SNO + with very low backgrounds

FIG. 4. Distribution of event directions with respect to solar direction for events with energy in the range 6.0-15.0 MeV.

Largest background to $0\nu\beta\beta$

- Invisible nucleon decay
- Solar neutrinos
- Supernova neutrinos

PHYSICAL REVIEW D 99, 032008 (2019)

Search for invisible modes of nucleon decay in water with the SNO+ detector

TABLE VI. Lifetime limits at 90% C.I. for the spectral and counting analysis, including statistical and systematic uncertainties alongside the existing limits.

	Spectral analysis	Counting analysis	Existing
п	$2.5 \times 10^{29} \text{ y}$	$2.6 \times 10^{29} \text{ y}$	$5.8 imes 10^{29}$
р	3.6×10^{29} y	3.4×10^{29} y	2.1×10^{29}
pp	4.7×10^{28} y	4.1×10^{28} y	5.0×10^{25}
pn	$2.6 \times 10^{28} \text{ y}$	$2.3 \times 10^{28} \text{ y}$	2.1×10^{25}
nn	$1.3 \times 10^{28} \text{ y}$	$0.6 \times 10^{28} \text{ y}$	1.4×10^{30}

See Martti Nirkko's slides!

Plus other analyses underway

Detector progress

- Operating with **water** from 2017
- Transition to **scintillator** happening now

- Invisible nucleon decay
- Solar neutrinos
- Supernova neutrinos
- Reactor neutrinos (Δm²₁₂)
- Geo-neutrinos

- LAB successfully distilled underground
- **PPO** prep underway
- N₂/steam stripping tested •

Scintillator purification plant commissioned

Detector progress

- Operating with **water** from 2017
- Transition to **scintillator** happening now
- **Tellurium** loading for ββ due in 2019-20 (1330 kg ¹³⁰Te)
- Invisible nucleon decay
- Solar neutrinos
- Supernova neutrinos
- Reactor neutrinos (Δm^{2}_{12})
- Geo-neutrinos
- Neutrinoless double-beta decay

Te needed for Phase I all underground

Te purification system almost complete

pped to SNOL ansported under esting one sample hard nravialis ras

Te-diol synthesis plant construction is well advanced (synthesised from telluric acid)

Ab

Water phase: measure **absorption** coefficient with light-diffusing "laserball" and underwater camera

Cheryl Patrick, UCL

See Martti Nirkko's slides! SNG

Water phase: measure **absorption** coefficient with light-diffusing "laserball" and underwater camera

Detector response assessed vs models with ¹⁶N source along 3 axes:

- Energy scale, resolution
- Vertex shift, scale, resolution
- Angular resolution

Cheryl Patrick, UCL

See Martti Nirkko's slides! SNG

Water phase: measure **absorption** coefficient with light-diffusing "laserball" and underwater camera

SNO+ Preliminary Pope et al., AO.36.008710 (199) Mason et al., AO.55.007163 (20 SNO+ Dec17 (Water Phase) 1_{50.0} 4 Ϋ¥1. 100.0 200.0 <u>┨┨┨┨┨┨┲┲┲┲┲┲</u>┲┲┲┲┲┲┲ 500 475 400 Wavelength (nm)

Detector response assessed vs models with ¹⁶N source along 3 axes:

- Energy scale, resolution
- Vertex shift, scale, resolution
- Angular resolution

ELLIE - Embedded Laser/LED Light-Injection Entity

Cheryl Patrick, UCL

See Martti Nirkko's slides! SNG

 UK/Lisbon LI system provides a wealth of information • Aim is to **minimise radon** ingress when source is deployed • Now deployed and operational!

Water phase: measure **absorption** coefficient with light-diffusing "laserball" and underwater camera

SNO+ Preliminary Pope et al., AO.36.008710 (1997 Mason et al., AO.55.007163 (201 SNO+ Dec17 (Water Phase) 1_{50.0} 4 $q_{\rm H}$ 100.0 200.0 ╘┲┲┲┲┲╊╊╊┲┲┲┲┲┲┲┲ 1111111111500 475 400 Wavelength (nm)

Detector response assessed vs models with ¹⁶N source along 3 axes:

- Energy scale, resolution
- Vertex shift, scale, resolution
- Angular resolution

ELLIE - Embedded Laser/LED Light-Injection Entity

Cheryl Patrick, UCL

See Martti Nirkko's slides! SNG

 UK/Lisbon LI system provides a wealth of information • Aim is to **minimise radon** ingress when source is deployed • Now deployed and operational!

Timing and Monitoring:

Water phase: measure **absorption** coefficient with light-diffusing "laserball" and underwater camera

SNO+ Preliminary Pope et al., AO.36.008710 (1997 Mason et al., AO.55.007163 (201 SNO+ Dec17 (Water Phase) 1_{50.0} 4 q_{1} 100.0 200.0 ╘┲┲┲┲┲╊╊╊┲┲┲┲┲┲┲┲ 1111111111500 475 400Wavelength (nm)

Detector response assessed vs models with ¹⁶N source along 3 axes:

- Energy scale, resolution
- Vertex shift, scale, resolution
- Angular resolution

ELLIE - Embedded Laser/LED Light-Injection Entity

Cheryl Patrick, UCL

See Martti Nirkko's slides! SNG

 UK/Lisbon LI system provides a wealth of information • Aim is to **minimise radon** ingress when source is deployed • Now deployed and operational!

Timing and Monitoring: **TELLIE**

Water phase: measure **absorption** coefficient with light-diffusing "laserball" and underwater camera

SNO+ Preliminary Pope et al., AO.36.008710 (1997 Mason et al., AO.55.007163 (201 SNO+ Dec17 (Water Phase) 1_{50.0} 4 q_{1} 100.0 200.0 ╘┲┲┲┲┲╊╊╊┲┲┲┲┲┲┲┲ 1111111111500 475 400Wavelength (nm)

Detector response assessed vs models with ¹⁶N source along 3 axes:

- Energy scale, resolution
- Vertex shift, scale, resolution
- Angular resolution

ELLIE - Embedded Laser/LED Light-Injection Entity

Cheryl Patrick, UCL

See Martti Nirkko's slides! SNG

 UK/Lisbon LI system provides a wealth of information • Aim is to **minimise radon** ingress when source is deployed • Now deployed and operational!

> Timing and Monitoring: **TELLIE Attenuation Module:**

Water phase: measure **absorption** coefficient with light-diffusing "laserball" and underwater camera

SNO+ Preliminary Pope et al., AO.36.008710 (1997 Mason et al., AO.55.007163 (201 SNO+ Dec17 (Water Phase) 1_{50.0} 4 q_{1} 100.0 200.0 ╘┲┲┲┲┲╊╊╊┲┲┲┲┲┲┲┲ 1111111111500 475 400Wavelength (nm)

Detector response assessed vs models with ¹⁶N source along 3 axes:

- Energy scale, resolution
- Vertex shift, scale, resolution
- Angular resolution

ELLIE - Embedded Laser/LED Light-Injection Entity

Cheryl Patrick, UCL

See Martti Nirkko's slides! SNG

 UK/Lisbon LI system provides a wealth of information • Aim is to **minimise radon** ingress when source is deployed • Now deployed and operational!

> Timing and Monitoring: **TELLIE Attenuation Module:** AMELLIE

Water phase: measure **absorption** coefficient with light-diffusing "laserball" and underwater camera

SNO+ Preliminary Pope et al., AO.36.008710 (1997 Mason et al., AO.55.007163 (201 SNO+ Dec17 (Water Phase) -150.0 R sqV₁ 100.0 200.0 ╘╼╼╼╼╒╞╞╞┋┋┋┋╝╝╝ 1111111111500 475 400Wavelength (nm)

Detector response assessed vs models with ¹⁶N source along 3 axes:

- Energy scale, resolution
- Vertex shift, scale, resolution
- Angular resolution

ELLIE - Embedded Laser/LED Light-Injection Entity

Cheryl Patrick, UCL

See Martti Nirkko's slides! SNG

 UK/Lisbon LI system provides a wealth of information • Aim is to **minimise radon** ingress when source is deployed • Now deployed and operational!

> Timing and Monitoring: **TELLIE Attenuation Module:** AMELLIE Scattering Module:

Water phase: measure **absorption** coefficient with light-diffusing "laserball" and underwater camera

SNO+ Preliminary Pope et al., AO.36.008710 (1997 Mason et al., AO.55.007163 (201 SNO+ Dec17 (Water Phase) -150.0 R sqV₁ 100.0 200.0 ╘╼╼╼╼╒╞╞╞┋┋┋┋╝╝╝ 1111111111500 475 400Wavelength (nm)

Detector response assessed vs models with ¹⁶N source along 3 axes:

- Energy scale, resolution
- Vertex shift, scale, resolution
- Angular resolution

ELLIE - Embedded Laser/LED Light-Injection Entity

Cheryl Patrick, UCL

See Martti Nirkko's slides! SNG

 UK/Lisbon LI system provides a wealth of information • Aim is to **minimise radon** ingress when source is deployed • Now deployed and operational!

> Timing and Monitoring: **TELLIE Attenuation Module:** Scattering Module:

AMELLIE **SMELLIE**

SuperNEMO and NEMO-3, at LSM, France

The NEMO principle

Strengths

- Source decoupled from detector use any solid **ββ source** isotope
- Track reconstruction gives **particle identification**
- Combine with timings to identify topologies for ultra-high **background rejection**
- Tracking info (angle between tracks) & individual energy distributions can distinguish between **BB** mechanisms

Weaknesses

SAPPHIBE

Distilled LONDON DRY GIN

Jupour INFUSED

- Energy resolution poorer than for most homogenous detectors
- Doesn't scale as well as some other designs

NEMO-3 (2003-2011)

results from NEMO-3

2vββ measurements and 0vββ limit • 82Se (Eur. Phys. J. C (2018) 78: 821)

World's

best

Summed 2-electron spectrum

2νββ:

 $T_{1/2} = 9.39 \pm 0.17$ (stat) ± 0.58 (sys) x 10¹⁹ years (SSD hypothesis)

Ονββ: T_{1/2} > 2.5 x 10²³ years (90% C.L.)

Higher state dominated - many excited states

Individual electron spectrum tells us about intermediate 1+ states

results from NEMO-3

2vββ measurements and 0vββ limit

- 82Se (Eur. Phys. J. C (2018) 78: 821)
- 100NO arXiv 903.08084 [nucl-ex]

- Over **5 x 10⁵ events** with $S/B \approx 80$
- **Lorentz Invariance Violation** and exotic $0\nu\beta\beta$ mechanisms would modify energy spectrum
- Limit set on contribution from Lorentz-Invariance violating events

 $-4.2 \times 10^{-7} \text{ GeV} < \mathring{a}_{of}^{(3)} < 3.5 \times 10^{-7} \text{ GeV} (90\% \text{ C.L.}).$

Best published result!

Cheryl Patrick, UCL

results from NEMO-3

2vββ measurements and 0vββ limit

- 82Se (Eur. Phys. J. C (2018) 78: 821)
- 100Mo arXiv 903.08084 [nucl-ex]
- 48Ca (Phys. Rev. D 93, 112008)
- 150Nd (Phys. Rev. D 94, 072003)
- 116Cd (Phys. Rev. D 95, 012007)
- 130Te (Phys. Rev. Lett. 107, 062504)
- 96Zr (Nucl.Phys.A847:168-179)
- Over **5 x 10⁵ events** with $S/B \approx 80$
- **Lorentz Invariance Violation** and exotic $0\nu\beta\beta$ mechanisms would modify energy spectrum
- Limit set on contribution from Lorentz-Invariance violating events

 $-4.2 \times 10^{-7} \text{ GeV} < \mathring{a}_{of}^{(3)} < 3.5 \times 10^{-7} \text{ GeV} (90\% \text{ C.L.}).$

Best published result!

Cheryl Patrick, UCL

	NEMO-3	SuperNEMO den
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	6.3 (⁸² Se)
$T_{1/2}^{2\nu}$ [y]	6.8 x 10 ¹⁸	9.4 x 10
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100 \; \mu { m Bq/kg}$	$< 2 \ \mu Bq/$
A(²¹⁴ Bi)	$<$ 300 μ Bq/kg	$<$ 10 μ Bq
Level of radon A(²²² Rn)	$\sim 5.0 \text{ mBq/m}^3$	< 0.15 mBc
Sensitivity after 5 (2.5) y data taking	$T_{1/2}^{0 u}>10^{24}$ y	$T_{1/2}^{0\nu} > 6 \times 1$

	NEMO-3	SuperNEMO den
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	6.3 (⁸² Se
$T_{1/2}^{2\nu}$ [y]	6.8 x 10 ¹⁸	9.4 x 10
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100 \; \mu { m Bq/kg}$	$<$ 2 μ Bq/
A(²¹⁴ Bi)	$<$ 300 $\mu { m Bq/kg}$	$<$ 10 μ Bq
Level of radon A(²²² Rn)	$\sim 5.0 \text{ mBq/m}^3$	< 0.15 mBc
Sensitivity after 5 (2.5) y data taking	${ m T}_{1/2}^{0 u}>10^{24}~{ m y}$	$T_{1/2}^{0 u} > 6 \times 1$

- 34 foils •
- Enriched Se powder mixed • with PVA
- Increased radio purity • through distillation / chromatography / chemical precipitation

Se

	NEMO-3	SuperNEMO den
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	6.3 (⁸² Se)
$T_{1/2}^{2\nu}$ [y]	6.8 x 10 ¹⁸	9.4 x 10
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100 \; \mu { m Bq/kg}$	$< 2 \ \mu Bq/$
A(²¹⁴ Bi)	$<$ 300 $\mu { m Bq/kg}$	$<$ 10 μ Bq
Level of radon A(²²² Rn)	$\sim 5.0 \text{ mBq/m}^3$	< 0.15 mBc
Sensitivity after 5 (2.5) y data taking	$T_{1/2}^{0 u}>10^{24}$ y	$T_{1/2}^{0\nu} > 6 \times 1$

- 2034 drift cells (13,000 wires!)
- Built and installed by UK team
- UK radon reduction / measurement programme also used by dark matter experiments

Se

	NEMO-3	SuperNEMO den
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	6.3 (⁸² Se
$T_{1/2}^{2\nu}$ [y]	6.8 x 10 ¹⁸	9.4 x 10
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100 \; \mu { m Bq/kg}$	$< 2 \ \mu Bq/$
A(²¹⁴ Bi)	$<$ 300 μ Bq/kg	$<$ 10 μ Bq
Level of radon A(²²² Rn)	$\sim 5.0 \text{ mBq/m}^3$	< 0.15 mBc
Sensitivity after 5 (2.5) y data taking	$ T_{1/2}^{0 u} > 10^{24} m y$	$T_{1/2}^{0 u} > 6 \times 1$

Se

	NEMO-3	SuperNEMO den
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	6.3 (⁸² Se)
$T_{1/2}^{2\nu}$ [y]	6.8 x 10 ¹⁸	9.4 x 10
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100 \; \mu { m Bq/kg}$	$< 2 \ \mu Bq/$
A(²¹⁴ Bi)	$<$ 300 μ Bq/kg	$<$ 10 μ Bq
Level of radon A(²²² Rn)	$\sim 5.0 \text{ mBq/m}^3$	< 0.15 mBc
Sensitivity after 5 (2.5) y data taking	${\sf T}_{1/2}^{0 u}>10^{24}$ y	$T_{1/2}^{0\nu} > 6 \times 1$

1. Trackers joined to calorimeter wall

Cheryl Patrick, UCL

Double Beta Decay

wall

system installed

Double Beta Decay

1. Trackers joined to calorimeter wall

system installed

3. Detector closed

Cheryl Patrick, UCL

Double Beta Decay

wall

system installed

3. Detector closed

- 2. Source foils and ²⁰⁷Bi calibration
- 4. Cabling calorimeter and tracker

Cheryl Patrick, UCL

- 2. Source foils and ²⁰⁷Bi calibration
- 4. Cabling calorimeter and tracker

Cheryl Patrick, UCL

Exotic 0vββ mechanisms

Lorentz invariance violation test

Extend NEMO-3's measurements

Double Beta Decay

Exotic 0vββ mechanisms

Lorentz invariance violation test

$2\nu\beta\beta$: SSD/HSD discrimination at 5σ level

Exotic 0vßß mechanisms

Lorentz invariance violation test

$2\nu\beta\beta$: SSD/HSD discrimination at 5σ level

Probe nuclear physics by investigating g_A

• Axial-vector coupling constant g_A is quenched in heavy nuclei

• $2\nu\beta\beta$ rate proportional to g_A^4 $\left(T_{1/2}^{2\nu}\right)^{-1} = \left(g_A^{\text{eff}}\right)^4 \left|M_{GT}^{2\nu}\right|^2 G^{2\nu}$

 New KamLAND-Zen paper investigates this quenching https://arxiv.org/pdf/1901.03871.pdf

> Precision measurement of the ¹³⁶Xe two-neutrino $\beta\beta$ spectrum in KamLAND-Zen and its impact on the quenching of nuclear matrix elements

> Gando,¹ Y. Gando,¹ T. Hachiya,¹ M. Ha Minh,¹ S. Hayashida,¹ Y. Honda,¹ K. Hosokawa,¹ H. Ikeda,¹ K. Inoue,¹ Ishidoshiro,¹ Y. Kamei,¹ K. Kamizawa,¹ T. Kinoshita,¹ M. Koga,^{1,2} S. Matsuda,¹ T. Mitsui,¹ K. Nakamura,¹ Ono,¹ N. Ota,¹ S. Otsuka,¹ H. Ozaki,¹ Y. Shibukawa,¹ I. Shimizu,¹ Y. Shirahata,¹ J. Shirai,¹ T. Sato,¹ K. Soma

 NEMO's topological capabilities mean it could do even **better**!

0vββ: $T_{1/2} > 6 \times 10^{24}$ years; $\langle m_v \rangle < 160-400$ meV

- Exotic 0vßß mechanisms
- Lorentz invariance violation test
- $2\nu\beta\beta$: SSD/HSD discrimination at 5σ level
- Probe nuclear physics by investigating g_A
 - Alternative isotopes: ¹⁵⁰Nd and ⁹⁶Zr

0vββ: $T_{1/2} > 6 \times 10^{24}$ years; $\langle m_v \rangle < 160-400$ meV

- Exotic 0vßß mechanisms
- Lorentz invariance violation test
- $2v\beta\beta$: SSD/HSD discrimination at 5σ level
- **Probe nuclear physics by investigating g_A**
 - Alternative isotopes: ¹⁵⁰Nd and ⁹⁶Zr
 - **0v4β: for** ¹⁵⁰Nd

NEMO-3 placed limit on lepton number-violating process, which could affect even Dirac neutrinos Phys. Rev. Lett. 119, 041801

0vββ: $T_{1/2} > 6 \times 10^{24}$ years; $\langle m_v \rangle < 160-400$ meV

- **Exotic Ovßß mechanisms**
- Lorentz invariance violation test
- $2\nu\beta\beta$: SSD/HSD discrimination at 5σ level
- **Probe nuclear physics by investigating g_A**
 - Alternative isotopes: ¹⁵⁰Nd and ⁹⁶Zr
 - **0v4β: for** ¹⁵⁰Nd

plus proof of concept for...

Full SuperNEMO

- Modular design allows easy scaling up
- 20 modules x 5 years (500 kg year) gives sensitivity comparable or better than current **leading experiments**
- Best technique to understand more about **Ονββ mechanism** in the event of discovery

Look to the future...

Bayesian probability density fit by D'Agostini, Benato & Detwiler: Phys. Rev. D 96, 053001 (2017)

Current experiments probe the **degenerate** regime •

Bayesian probability density fit by D'Agostini, Benato & Detwiler: Phys. Rev. D 96, 053001 (2017)

Bayesian probability density fit by D'Agostini, Benato & Detwiler: Phys. Rev. D 96, 053001 (2017)

- Current experiments probe the **degenerate** regime •
- Next-generation will cover full inverted hierarchy region

- Next-generation will cover **full inverted hierarchy** region
- When likelihood density is considered, this mass range also covers more than • 50% of normal hierarchy probability

Bayesian probability density fit by D'Agostini, Benato & Detwiler: Phys. Rev. D 96, 053001 (2017)

Several slow liquid scintillator mixtures developed at Oxford provide:

- excellent **time separation** of Cherenkov light to help • reconstruct event **topology**
- high scintillation light yield for high energy resolution

Thanks to Steve Biller for slide content

Several slow liquid scintillator mixtures developed at Oxford provide:

- excellent **time separation** of Cherenkov light to help • reconstruct event topology
- high scintillation light yield for high energy resolution

Thanks to Steve Biller for slide content

Several slow liquid scintillator mixtures developed at Oxford provide:

- excellent **time separation** of Cherenkov light to help • reconstruct event topology
- high scintillation light yield for high energy resolution •

Thanks to Steve Biller for slide content

- excellent **time separation** of Cherenkov light to help reconstruct event topology

Thanks to Steve Biller for slide content

UK future involvement - LEGEND HP⁷⁶Ge detector

LEGEND-200kg @ LNGS

- **10²⁷ yrs** : 1 order of magnitude more sensitive than current leading experiments. Neutrino mass discovery reach **50 meV**.
- Start running **2021**, run for 5-7 years.

Double Beta Decay

25

UK future involvement - LEGEND HP⁷⁶Ge detector

LEGEND-200kg @ LNGS

- **10²⁷ yrs** : 1 order of magnitude more sensitive than current leading experiments. Neutrino mass discovery reach **50 meV**.
- Start running **2021**, run for 5-7 years.

Double Beta Decay

LEGEND-1T

- 10²⁸ yrs : Neutrino mass
 - discovery reach **18 meV** even for pessimistic NMEs.
- Turn on in **2025** with 1-tonne of isotope.

UK future involvement - LEGEND HP⁷⁶Ge detector

LEGEND-200kg @ LNGS

- **10²⁷ yrs** : 1 order of magnitude more sensitive than current leading experiments. Neutrino mass discovery reach **50 meV**.
- Start running **2021**, run for 5-7 years.

Double Beta Decay

LEGEND-1T

- 10²⁸ yrs : Neutrino mass
 - discovery reach **18 meV** even for pessimistic NMEs.
- Turn on in **2025** with 1-tonne of isotope.

Lancaster University

UK Initial Participation :

Combination of **Particle** Physics and **Nuclear** Physics groups.

UNIVERSITY OF THE UNIVERSITY OF LIVERPOOL WARWICK

Builds on world-renowned expertise in **HPGe** detector development, low-background techniques and software/analysis expertise.

KATRIN (Karlsruhe, Germany)

- Launched June 2018 •
- β decay of **tritium molecules** •
- Spectrometer uses collimator/filter to measure highest energy • electrons
- Sensitivity $m_v < 240 \text{ meV}$ is the best achievable with this technique •

Photo: KATRIN

Cheryl Patrick, UCL

Project 8 (design phase)

- Electron energy measured using cyclotron radiation: frequency related to kinetic energy
- Atomic tritium improves sensitivity to 40meV

Cheryl Patrick, UCL

Project 8 (design phase)

- Electron energy measured using cyclotron radiation: frequency related to kinetic energy
- Atomic tritium improves sensitivity to 40meV

ββ decay in the UK

Entering exploitation phase: scintillator filling at SNO+, commissioning data at SuperNEMO

ββ decay in the UK

Slow scintillator

LEGEND

Low-background techniques

Quantum sensors

Entering exploitation phase: scintillator filling at SNO+, commissioning data at **SuperNEMO**

ββ decay in the UK

Slow scintillator

LEGEND

Low-background techniques

Quantum sensors

Entering exploitation phase: scintillator filling at SNO+, commissioning data at **SuperNEMO**

Backup Slides

Source foil contamination measured at the BiPo-3 detector

Cheryl Patrick, UCL

- Dedicated detector at Canfranc, Spain
- Designed to measure very **low activities**
- Looks for characteristic signature of Bi β decay followed by α decay of Po daughter (U and Th decay chains)
- Targets 10µBq /kg (²¹⁴Bi), 2µBq/kg (²⁰⁸TI)
- Not very sensitive to ²¹⁴Bi final measurements will be taken *in situ*

Tracker gas system

95% Helium

Low atomic mass; prevents multiple scattering and energy loss

1% Argon

Low ionisation energy; helps avalanche propagate

4% Ethanol

Quenches avalanche; prevents re-firing

Gas system controlled by Raspberry Pi to monitor and control temperature, pressure, flow rate 2°C temperature change \rightarrow 0.5% change in ethanol fraction \rightarrow tracker efficiency

Event count targets in SuperNEMO demonstrator

Aiming at zero background

Events in window $E_{SUM} \in [2.8, 3.2] \text{ MeV}$	NEMO-3 Phase 2 (29 kg.yr)	Demonstrator Module (29 kg.yr)	Comments	
External Bkgnd	<0.16	<0.16	(conservative)	NEMO-3
Bi214 from Rn222	2.5 ± 0.2	0.07	radon reduction	sensitivity in 4.5 months
Bi214 internal	0.80 ± 0.08	0.07		
TI208 internal	2.7 ± 0.2	0.05	internal contamination reduction	
2νββ	7.16 ± 0.05	0.20	Mo100 to Se82 8% to 4% resolution	
Total expected	13.1 ± 0.3	0.39		
Data	12	N/A (yet)		

Isotope	Mass (g)	Q _{ββ} (keV)	T(^{2v}) (x10 ¹⁹ yrs)	S/B	Comment	Reference	
Se82	932	2997.9	9.4 ± 0.6	4	World's best	Eur. Phys. J. C (2018) 78: 821	NEW
Cd116	405	2813.5	2.74 ± 0.18	10	World's best*	Phys. Rev. D 95 (2017) 012007	
Nd150	37	3371.4	0.93 ± 0.06	2.7	World's best	Phys. Rev. D 94 (2016) 072003	
Zr96	9.4	3355.8	2.35 ± 0.21	1	World's best	Nucl.Phys.A 847(2010) 168	
Ca48	7	4268	6.4 ± 1.2	6.8 (h.e.)	World's best	Phys. Rev. D 93 (2016) 112008	
Mo100	6914	3034	0.68 ± 0.05	80	World's best	Neutrino 2018	UPDATED
Te130	454	25227.5	70 ± 14	0.5	First direct detection	Phys. Rev. Lett. 107, 062504 (2011)	

Crucial experimental input for

1) NME calculations

2) Ultimate background characterisation for $0 \mathrm{v}$

3) Sensitive to exotic BSM physics (e.g. Lorentz violation, *G*^{*f*} time dependence, bosonic neutrinos etc)

Taken from R Saakyan, NDM2018

* Together with Aurora

Summed 2-electron energy is best distribution to separate signal from background

Sensitivity to 0vββ

Summed 2-electron energy is best distribution to separate signal from background

Using a **boosted decision tree**, we can **improve sensitivity** by including **other** variables (angle between tracks, individual electron energies, internal/ external probability, vertex separation...) (approx 10% improvement)

Sensitivity to 0vββ

T_{1/2} > 5.85 x 10²⁴ years (90% C.L) For 7kg of ⁸²Se (demonstrator) and 2.5 years' exposure

Summed 2-electron energy is best distribution to separate signal from background

Using a **boosted decision tree**, we can **improve sensitivity** by including **other** variables (angle between tracks, individual electron energies, internal/ external probability, vertex separation...) (approx 10% improvement)

ELLIE - Embedded Laser/LED Light-Injection Entity

- Now deployed and operational!

TELLIE: Timing and Monitoring

90 wide LED beams @520nm, aimed at the centre

AMELLIE: Attenuation module

4 narrow LED beams at 0 and 20 degrees (wavelength TBD)

• **UK**/Lisbon system providing a wealth of detector info • Aim is to **minimise radon** ingress when source is deployed

SMELLIE: Scattering module

5 narrow laser beams injection points, 3 angles @ 375, 405, 495nm and 400-700nm

Detector response

Detector calibrations

Cheryl Patrick, UCL

Double Beta Decay

36

NEMO-3 - quadruple beta decay

- $2\nu\beta\beta$ measurements and $0\nu\beta\beta$ limits for several isotopes
 - 100Mo (Phys. Rev. Let. 95, 182302)
 - 48Ca (Phys. Rev. D 93, 112008)
 - 82Se (Eur. Phys. J. C (2018) 78: 821)
 - 150Nd (Phys. Rev. D 94, 072003)
 - 116Cd (Phys. Rev. D 95, 012007)
 - · 130Te (Phys. Rev. Lett. 107, 062504)
 - **96Zr** (Nucl.Phys.A847:168-179)
- · Quadruple β decay (Phys. Rev. Lett. 119, 041801)

Low background strategy: reduce, remove, reject

Radon 222 (from U decay chain): target activity 150 µBq / m³

~ 30 times lower than NEMO-3

Low background strategy: reduce, remove, reject

Reduce radon contamination with radio-pure components

Emanation chamber lets us measure activity of tracker components and materials: select only the most radio-pure

70 litre electrostatic detector sensitive down to 0.09mBq

Radon 222 (from U decay chain): target activity 150 µBq / m³

Low background strategy: reduce, remove, reject

Radon 222 (from U decay chain): target activity 150 µBq / m³

Reduce radon contamination with radio-pure components

Emanation chamber lets us measure activity of tracker components and materials: select only the most radio-pure Remove Rn with cold carbon trap

Radon concentration line lets us measure the low activities in the tracker

Measured activity: 2.7 ± 0.3 mBq / m³ Flush with He: 2 m³ / hour **Resulting** activity: 0.15 mBq / m³

70 litre electrostatic detector sensitive down to 0.09mBq

Remove radon from tracker gas (95% helium, 1% argon, 4% ethanol)

He: 10¹⁰ x suppression - completely **clean N₂:** 20x purification - 20 µBq/m³

Low background strategy: reduce, remove, reject

Radon 222 (from U decay chain): target activity 150 µBq / m³

Reduce radon contamination with radio-pure components

Emanation chamber lets us measure activity of tracker components and materials: select only the most radio-pure Remove Rn with cold carbon trap

Radon concentration line lets us measure the low activities in the tracker

Measured activity: 2.7 ± 0.3 mBq / m³ Flush with He: 2 m³ / hour **Resulting** activity: 0.15 mBq / m³

70 litre electrostatic detector sensitive down to 0.09mBg

Remove radon from tracker gas (95% helium, 1% argon, 4% ethanol)

He: 10¹⁰ x suppression - completely **clean N₂:** 20x purification - 20 µBq/m³

Reject background events with topological and timing cuts

Fully-instrumented tracker gives:

- Event vertex
- Particle ID
- Timings \rightarrow direction of travel

Reject non-ββ topologies at analysis time

Calorimeter development

Main calorimeter walls: 520 optical modules With side, top and bottoms: 712 modules total

Nucl. Inst. Meth. A 868, 98-108 (2017)

Calorimeter development

Calorimeter development

440 8" radiopure PMTs with improved photocathode quantum efficiency (5" PMTs for outer rows and columns. side, top and bottom)

Calorimeter development

Calorimeter development

