Search for H->e⁺e⁻ using 140fb⁻¹ of 13 TeV pp collision data with the ATLAS experiment

Russell Turner

Elementary **Particles** Fermions Bosons U up charm top Quarks Z d b S down strange bottom W V_e V_{τ} V_µ W boson electron muon tau Leptons neutrino neutrino neutrino е T g L electron muon

I II III Three Families of Matter

[1] Phys.Lett. B744 (2015) 184-207 arXiv:1410.6679

Introduction

- Search for direct decay from Higgs to e^+e^-
 - Previous measurements and observations of the Higgs boson have been of third generation fermions and gauge bosons, so first generation fermions are mostly unexplored
- There are no results for this decay at 13 TeV, previous result was from CMS with 8 TeV data [1]
- Despite the low SM branching ratio ($\sim 5 \times 10^{-9}$), this search has similar backgrounds and efficiencies to the H-> $\mu^+\mu^-$ search [2], so we can use similar methodology

Analysis Outline

Today's presentation covers 4 steps of the analysis:

- Event selection
- Event categorisation
- Fit to signal Monte Carlo (gluon-gluon fusion [ggF] and vector boson fusion [VBF], among others) to parameterise signal probability distribution function (PDF)
- Fit to data, with smooth PDF fitted to sidebands for the background, and fitted signal model used for signal efficiency
 - Branching ratio used as parameter of interest
 - Production cross-sections assumed to be SM values

9 000000

q 000000

Event Selection

Electrons

Jets (used in VBF category)

 $p_{T} > 7 \text{ GeV}$ $p_{T} > 30 \text{ GeV}$

|η| < 2.47 |η| < 4.5

- Events pass a single electron trigger
- Two opposite sign electrons
 - $p_T > 27 \text{ GeV}$ for leading, $p_T > 15 \text{ GeV}$ for sub-leading
- Sig(MET) = MET/($\Sigma(p_T)^{\text{jets+leps}}$)^{1/2} < 3.5 GeV^{1/2}
- No events with jets tagged as containing a b-hadron (using a tagging algorithm with 60% efficiency)
- The signal region is defined as $110 < M_{ee} < 160 \text{ GeV}$

M_{ee} distribution after selection

Background MC not used in analysis

VBF

Event categorisation

Seven orthogonal categories are used, the first is designed to select "VBF-like" events:

p _T ^{ee} [GeV]	Cent	Forw	
<15	LowC	LowF	
>15 <50	MidC	MidF	
>50	HiC	HiF	

- Two (or more) jets
- Leading jets in opposite ends of the detector ($\eta_1 \eta_2 < 0$)
- $\Delta(\eta_1, \eta_2) > 3$
- $M(j_1, j_2) > 500 \text{ GeV}$

Non VBF-like events are split kinematically by electron $\boldsymbol{\eta}$

- Central ($|\eta_{e1}| < 1.0 \text{ AND } |\eta_{e2}| < 1.0$)
- Forward (NOT Central)

And then split further into low, medium, or high di-electron p_T

Signal Modeling

Model signal as sum of a Gaussian and Crystal Ball: $F_{sig} = (1 - f) CB(M_{ee}; \mu_C, \sigma_C, \alpha, n) + f G(M_{ee}; \mu_G, \sigma_G)$ • $\mu = mean, \sigma = width$

- α = "cut-off" parameter of Crystal Ball
- n = "slope" parameter of Crystal Ball (fixed to 1)
 - f = fractional contribution of the Gaussian

Signal Fits

Background Modeling

- Breit-Wigner (resonance) \otimes Gaussian (detector) (Z/ γ^*)
- Exponential/x³ (VV/top)

 $\mathsf{F}_{\mathsf{bkg}} = \mathsf{f} \left[\mathsf{BW}(\mathsf{M}_{\mathsf{ee}};\mathsf{M}_{\mathsf{Z}},\mathsf{\Gamma}_{\mathsf{Z}}) \otimes \mathsf{G}(\mathsf{M}_{\mathsf{ee}};\boldsymbol{\sigma}_{\mathsf{G}}) \right] + (1 - \mathsf{f}) \exp(\mathsf{B} \mathsf{M}_{\mathsf{ee}}) / (\mathsf{M}_{\mathsf{ee}})^3$

- M_7 and Γ_7 set to PDG values (91.2 GeV and 2.49 GeV)
- σ_{G}^{-} resolution found using simple Gaussian fit to signal peak in MC, then fixed in fit to data
- B floating between -1 and 1, f floating between 0 and 1

Background Fits

Systematic Variations

Three sources of systematics are considered

- Experimental shape and normalisation systematics on the signal, e.g. detector resolution in signal MC
- Theoretical signal systematics, e.g. the uncertainty on σ_{ggF} (since we are measuring a branching ratio)
- "Spurious signal" uncertainty, based on the background (mis-)modeling

Systematics

Signal modeling fit is repeated for each systematic set to +1 σ and -1 σ

In the final fit to data, each systematic is represented by a nuisance parameter

The largest impact comes from the theoretical uncertainty on the ggF cross-section

However these uncertainties are still small compared to the statistical uncertainty

Spurious signal systematic still under investigation, but from preliminary results it is also expected to be small

Systematics (Asimov Fit)

Final Fitting/Results

CMS Paper:

Phys.Lett. B744 (2015) 184-207 arXiv:1410.6679 Likelihood computed from data and fitted PDFs (including systematic nuisance parameters

95% CL_s limit on the branching ratio BR(H->ee) computed through a scan of BR hypotheses

Expected limits on BR(H->ee) at 140fb^{-1} , compared with CMS observed limit at 19.7 fb⁻¹, 8 TeV [x10⁻⁴]:

CMS exp (19.7 fb ⁻¹)	CMS obs (19.7 fb ⁻¹)	Expected	+2σ	+1σ	-1σ	-2σ
24	19	3.3	6.3	4.6	2.4	1.8

Conclusions

Expected limits on BR (H -> e^+e^-) are factor ~5.5 better than previously observed limits on the same branching ratio

Phys.Lett. B744 (2015) 184-207 arXiv:1410.6679

CMS Paper:

While luminosity alone does not account for this improvement, there is a large increase (factor ~2.3) in the production cross-section that contributes

Some analysis techniques have also changed which contributes to the change

Also shows an ~1.4 factor improvement in sensitivity from an interpretation of the 80fb^{-1} ATLAS H-> $\mu\mu$ result, close to what you would expect from the increase in luminosity

This is due to this analysis using much more similar techniques to the ATLAS H-> $\mu\mu$ analysis