tt Charge Asymmetry with Fully Bayesian Unfolding at $\sqrt{s} = 13$ TeV in ATLAS

Robert Vallance

University of Birmingham

IOP 08-10 April 2019, Imperial College London

The ATLAS Detector

$$\nu = \frac{1}{2} \left(\frac{E + p_Z}{E - p_Z} \right)$$

1

$$\eta = -\ln \tan \frac{\theta}{2}$$

Charge Asymmetry Origin

- At 13 TeV pp collisions in the LHC, 10% of $t\overline{t}$ production by $q\overline{q}$ annihilation.
- Incoming q can be valence (higher momentum fraction of proton) and incoming \overline{q} must be from sea (lower momentum fraction).
- At NLO (Next-to-Leading Order) in QCD (Quantum Chromodynamics), interference between final/initial state radiation and one-loop/Born diagrams.
- Leads to top preferentially produced in q direction (with greater rapidity) and antitop produced in \overline{q} direction (less rapidity).

Motivations for Study

- D0 and CDF experiments at the Tevatron found small deviations of charge asymmetry from NLO QCD predictions. arXiv:1101.0034 [hep-ex], arXiv:1107.4995 [hep-ex].
- 7 and 8 TeV LHC results show no such deviations but uncertainties are statistically dominated.
- Asymmetry is sensitive to BSM (Beyond the Standard Model) theories such as axigluons, Z' particles and effective field theories.

Two Channels

Lepton+Jets

Dataset and Event Selection

80 fb⁻¹ 13 TeV ATLAS dataset from 2015-17 Exactly 2 oppositely-charged leptons ($ee/e\mu/\mu\mu$) One lepton has $p_T > 28$ GeV, other has $p_T > 25$ GeV At least 2 narrow jets, each with $p_T > 25$ GeV 1 or ≥ 2 jets to be b-tagged Z veto in $ee/\mu\mu$ channels: $|m_{l\bar{l}} - m_Z| > 10$ GeV $t\bar{t}$ system reconstructed

- 6 sub-channels: $(ee/e\mu/\mu\mu) \times (1 \text{ b-tag}/\geq 2 \text{ b-tags})$ of different background contamination.
- Backgrounds of single top production, Z+jets, dibosons, fake leptons, W bosons decaying to taus, and rare processes.

Charge Asymmetry Observables

• Measuring charge asymmetry between top and antitop:

 $A_{C}^{t\bar{t}} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$

Expected to be small and positive (0.01 - 1%).

• And also between the two leptons: $A_{C}^{l\bar{l}} = \frac{N(\Delta|\eta| > 0) - N(\Delta|\eta| < 0)}{N(\Delta|\eta| > 0) + N(\Delta|\eta| < 0)}$

$$\Delta |\eta| = |\eta_l| - |\eta_{\bar{l}}|$$

 $\Delta |y| = |y_t| - |y_{\bar{t}}|$

No $t\bar{t}$ reconstruction so smaller systematics. Asymmetry expected to be even smaller than for $t\bar{t}$.

• Calculating asymmetries inclusively and in differential bins of $t\bar{t}$ mass, p_T and velocity. Work in 4 $\Delta|y|$ or $\Delta|\eta|$ bins in each case. Focussing on $t\bar{t}$ asymmetry in this talk.

6

Our 6 Sub-Channels

- Clean signal in dilepton channel.
- Asymmetry calculated by subtracting left two bins from right two bins in each channel.
- Just showing Asimov total MC prediction treated like data.

Fully Bayesian Unfolding (FBU)

- Data is subject to smearing/resolution effects and doesn't cover the full phase space of $\bar{t}t$ production. FBU uses response matrices to map detector level events back to parton level events.
- Can then compare with other experimental results.
- Method allows our 6 sub-channels to be combined and for systematic uncertainties (including detector, modelling and background normalisation) to be constrained. This arises from sampling gaussian distributions describing each systematic.

	ATLAS Simulation work-in-progress Response Matrix																									
level bins [0.5, 5]	0.0003	0.0005	0.0012	0.0035	0.0002	0.0005	0.0012	0.0046	0.0009	0.0016	0.0033	0.0102	0.0006	0.0012	0.0032	0.0121	0.0004	0.0007	0.0014	0.0047	0.0003	0.0006	0.0015	0.0060		0.012
Lorio [0, 0.5]	0.0007	0.0017	0.0027	0.0016	0.0006	0.0021	0.0040	0.0017	0.0021	0.0046	0.0072	0.0045	0.0017	0.0053	0.0099	0.0046	0.0009	0.0019	0.0030	0.0020	0.0007	0.0024	0.0045	0.0021	-	0.008
[-0.5, 0]	0.0016	0.0027	0.0017	0.0007	0.0017	0.0040	0.0021	0.0006	0.0044	0.0072	0.0046	0.0021	0.0046	0.0100	0.0053	0.0016	0.0019	0.0030	0.0019	0.0009	0.0022	0.0045	0.0024	0.0008		0.006
[-5, -0.5]	0.0035	0.0012	0.0006	0.0003	0.0046	0.0012	0.0004	0.0002	0.0102	0.0033	0.0016	0.0009	0.0122	0.0033	0.0013	0.0006	0.0047	0.0014	0.0007	0.0004	0.0060	0.0015	0.0006	0.0003		0.002
ee 1 b-tag					ee ≥ 2 b-tags				eμ 1 b-tag e				$\mu \ge 2$ b-tags			μμ 1 b-tag			μ	$\mu\mu \ge 2 \text{ b-tags}$						

Fully Bayesian Unfolding (FBU)

- Samples different parton level values for each Δ|y| bin, folds to detector level with response matrix and then calculates the likelihood of this with respect to expected detector level MC or data.
- Likelihood value multiplied by prior in parton level events to get a posterior value.
- The posterior values together make up a posterior distribution.

Binning Choice to Eliminate Bias

- A BSM axigluon model is used to reweight the $\Delta |y|$ MC events at parton and detector level.
- Weights are introduced to scale the simulated asymmetry by \pm 1, 2, 3 and 4 % away from the Standard Model expectation.
- Select bin edges x in the 4 Δ|y| bins
 [-5, -x, 0, x, 5] that give best unfolded vs parton level agreement.

Expected Sensitivities

Inclusive

80 fb⁻¹ 13 TeV ATLAS: 0.0035 ± 0.0065 20 fb⁻¹ 8 TeV ATLAS: 0.021 ± 0.016 (from 2016 paper Phys. Rev. D 94, 032006)

Expected Sensitivities

Conclusions

- FBU being used to determine parton level $t\bar{t}$ charge asymmetry in two channels (as well as dilepton asymmetry in dilepton channel).
- Binning optimisation to help reduce bias.
- Showing expected sensitivities for 80 fb⁻¹. Uncertainties reduced with respect to 8 TeV analysis. More differential bins also used.
- Aim to combine dilepton and lepton+jets results in full 140 fb⁻¹ dataset.

BACKUP: Fully Bayesian Unfolding (FBU)

- Calculate likelihood of data D given parton level (truth T) using expected detector level (reco R) and background B with Poisson statistics. *M* = response matrix from truth to reco.
- Flat prior $\pi_F(T)$ chosen and combined with likelihood to obtain a posterior probability of truth given data.
- Systematics θ (nuisance parameters) included by extending likelihood with Gaussian priors $\pi_G(\theta)$.
- Allows combined unfolding of dilepton and lepton+jets channels as well as marginalising the systematics to reduce their values.

$$\mathcal{L}(D|T, \mathcal{M}, B) = \prod_{i=1}^{N_r} \frac{(r_i + b_i)^{d_i}}{d_i!} e^{-(r_i + b_i)}$$

 $P(\mathbf{T}|\mathbf{D},\mathcal{M}) \propto \mathcal{L}(\mathbf{D}|\mathbf{T},\mathcal{M})\pi_F(\mathbf{T})$

$$\mathcal{L}(\mathbf{D}|\mathbf{T}) = \int \mathcal{L}(\mathbf{D}|\mathbf{T},\theta) \pi_{G}(\theta) d\theta$$

BACKUP: Charge Asymmetry at the Tevatron

$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

This is a forward-backward asymmetry that considers the means of the rapidity distributions rather than the widths as at the LHC.

Tevatron	inclusive	$m_{t\bar{t}} < 450 { m ~GeV}$	$m_{t\bar{t}} > 450 { m ~GeV}$	$ \Delta y < 1$	$ \Delta y > 1$
SM $t\bar{t}$ rest-frame $A_{t\bar{t}}$	0.087(10)	0.062(4)	0.128(11)	0.057~(4)	0.193~(15)
$D0^{9}$	$0.196\ (65)$	$0.078~(48)^*$	$0.115~(60)^*$	$0.061 \ (41)^*$	$0.213 \ (97)^*$
$ ext{CDF}^{12}$	0.162(47)	0.078~(54)	0.296(67)	0.088~(47)	0.433(109)

arXiv:1207.0331 [hep-ph]

BACKUP: Binning Choice to Eliminate Bias

For different injected asymmetries, choose the bin x that gives a slope closest to 1 and offset 0.

1.2

1.15

1.1

ATLAS Simulation

work-in-progress

slope

BACKUP: Expected Sensitivities (Lepton+Jets Channel)

