

TOP CHARGE ASYMMETRY

TOP PHYSICS

Cornerstone of the Standard Model

- Heaviest known fundamental particle, $m\approx 170\;GeV/c^2$
- Sensitive to EW symmetry breaking and BSM physics

Drive for precision measurement

- Behaviour to higher order well predicted by theory ^[1]
- Top data to constrain effective field theory operators ^[2]

LHCb TOP DATA

Forward top production

- LHCb provided first observation in Run I data ^[3]
- 13 TeV fiducial cross-section 10 fold increase [4]

The LHCb detector

- Unique coverage, $2 < \eta < 5$, for tracking & PID
- Low pile-up environment, 1-2 interactions pbc.

CHARGE ASYMMETRY

Higher order processes

- Asymmetry results from NLO interference
- Only in quark initiated top pair production

LHC expectations

- Positive asymmetry boosts t forward relative to \overline{t}
- Measurement through sign-indicative *W* decays

Forward sensitivity

- Dilution from gg supressed in LHCb acceptance
 - Asymmetry increases with pseudorapidity, η

FINAL STATE

- $t \rightarrow (W \rightarrow \mu v) + b$
- Single, prompt & isolated muon reconstructed
- Signature of EW process vs. di-jet production

Event selection

- Angular separation between muon and jet
- Final state p_T imbalance, proxy for missing E_T
- Higher p_T thresholds select top preferentially

JET FLAVOUR TAGGING

Binary classifiers

- BDTs trained on secondary vertex & jet info.
- Provides excellent light parton mistag rejection
- Limited by dependence on SV-tag efficiency

Flavour template fits

- *W*+*b*/*W*+*j* from MC normalised to *W*+*j* data
- *W*+*c* cross check with negligible top contribution

RUN II PROSPECTS

- New samples with NLO Powheg & MadGraph
- Full 6 fb⁻¹ \sqrt{s} = 13 TeV data set now available
 - More efficient jet configuration for Run II
- Updated ML approach to LHCb's flavour tagging
- Intermediate measurements of W+jet, W+c, W+b
- Diff. cross-sections constrain PDF uncertainties

First top asymmetry measurement at LHCb

Working towards Run III & IV precision top

- [1] A Kagan et al. 'Top LHCb physics' (2011) [arXiv:1103.3747]
- [2] C Zhang et al. 'Effective field theory...' (2014) [arXiv:1008.3869]
- [3] LHCb collab. 'First observation of top...' (2015) [arXiv:1506.00903]
 [4] M Czakon et al. 'Pinning down the...' (2016) [arXiv:1611.08609]
- [5] R Gauld. 'Leptonic top quark...' (2013) [arXiv:1409.8631v2]
 [6] LHCb collab.. 'Identification of...' (2015) [arXiv:1504.07670]

