THE ROYAL SOCIETY

Imperial College London

Differential measurement of the Z/ γ ratio with the CMS experiment in pp collisions at 13 TeV

IOP HEPP APP Annual Conference 9th April Imperial College London

Angelo Giacomo Zecchinelli

Motivation

- With the large LHC Run2 dataset, precision measurements of V+jets processes are becoming valuable tools to probe several SM features:
 - perturbative QCD
 - higher order QCD and EWK effects
 - PDFs
 - ...
- Active theoretical developments in providing (N)NLO QCD and NLO EWK corrections for V+jets processes. Need data measurements to validate these predictions.
- Differential cross-section ratios are particularly sensitive due to (partial)uncertainty cancellation
- V+Jets are also crucial processes to control backgrounds to BSM searches

Motivation - Z+Jets/ γ +Jets

• Z/ γ ratio is sensitive to higher order electroweak corrections that increase with $p_{\rm T}$ due to large Sudakov logarithms

QCD corrections

- Mostly moderate and stable QCD corrections
- Small $p_{\rm T}$ dependence

EW corrections

- Different corrections for Z and γ
- -20%/-8% EW for Z $/~\gamma$
- $_{\rm Motivation}$ EW corrections are growing with $p_{\rm T}$

Motivation - Z+Jets/ γ +Jets

• Z/ γ ratio is sensitive to higher order electroweak corrections that increase with $p_{\rm T}$ due to large Sudakov logarithms

QCD corrections

- Mostly moderate and stable QCD corrections
- Small $p_{\rm T}$ dependence

EW corrections

- Different corrections for Z and γ
- -20%/-8% EW for Z $/~\gamma$
- \bullet EW corrections are growing with $p_{\rm T}$

${\sf Z}/\gamma$ analysis

Event selection

Data

- Using the full 2016 dataset corresponding to an integrated luminosity of $35.9{\pm}0.9~{\rm fb}^{-1}$
- Single muon and single photon datasets used respectively for Z+jets, $\gamma+{\rm jet.}$

MC

- Signal from Drell-Yan to $\ell\ell$ and $\gamma+$ jets samples
- Background: W+Jets, $t\bar{t}$, Single top, ttV, VBF W/Z + Jets, Diboson tt γ , QCD multijet
- For **Z+jet**:
 - Require 2 tight muons with $p_{\rm T} >$ 30 GeV, $|\eta| <$ 2.4, opposite charge.
 - $71 < m_{||} < 111$ GeV.
 - p_{T} of dimuon pair > 200 GeV
 - Jets with $p_{
 m T}>$ 40 GeV, $|\eta|<$ 2.4
 - $p_{
 m T}$ of leading jet $> 100~{
 m GeV}$
 - $N_{jet} \geq 1$

- For γ+jet:
 Require 1 photon with
 - $p_{
 m T}>$ 200 GeV, $|\eta|<$ 1.4.

Z + Jets

Extracting the cross section

- Good agreement between Data-MC
- Background at 3%, mainly from Diboson and $t\bar{t}$
- MC background subtraction

Extracting the cross section

- We unfold the reconstructed events to extract the particle level distribution
- Unfolding is performed using a least square method with Tikhonov regularisation

Results

We unfolded the data distribution to particle level, now we can test it against different predictions

- Madgraph DYJets LO
 - up to 4 hard jets
- Madgraph DYJets NLO
 - up to 2 hard jets

Imperial College London

Collinear Z emission

- Studying the angular separation between Z (or its decay products) and closest jet allows to probe configuration where real Z emitted from dijet final state
- At LO in Z+1 jet, Z and jet are back-to-back
- At NLO, Z+1 jet process has QCD and EWK corrections, from real and virtual contributions
- For real Z emission, contribution scales as $O(\alpha ln^2(p_{T,j}/m_Z) \rightarrow \text{gives})$ collinear enhancement in angular separation between Z and closest jet.

Collinear Z emission

• Small ΔR : Negative correction from real EW emission

 Negative QCD correction in the peak

$\gamma {+} \mathsf{Jets}$

extraction of cross section

- Isolation template fit: fit to shower shape variable σ_{iηiη} using as pdfs:
 - Real template from γ+jets MC
 - Fake template from isolation sideband

extraction of cross section

 Unfolding is performed using a least square method with Tikhonov regularisation

We unfold the reconstructed.

level distribution

events to extract the particle

Good Data-MC agreement
 A.G. Zecchin®li Main background from QCD

Results

Comparison to 4 theoretical predictions:

MG5_aMC@LO Sherpa@LO

MG5_aMC@NLO

JetPhox@NLO

Conclusion

- With the Run 2 data we have moved into the precision era of LHC physics
- Z/γ + jets measurement will increase the sensitivity of BSM searches as well as constrain EWK and QCD effects at unprecedented energies
- The $\gamma+{\rm jets}$ and Z+jets analysis have been completed, in the internal review process
- Unfolded data to be compared with latast and greatest theoretical predictions

Thank you for your attention

Backup

${\rm Z+Jets}/\gamma{\rm +Jets} \text{ in } {\rm Run1}$

- Run1 CMS analysis (19.7 fb⁻¹)
- Data is compared to NLO QCD and NLO QCD+EW
- Better agreement observed when including EW corrections
- Low statistics at high *p*_T

 \rightarrow With Run2 data we can constrain effects from higher order EWK $_{\text{Backup}}$

BSM motivation - The Z $\rightarrow \nu\nu$ background

- $\gamma + {\rm jets}$ process is a key control sample for BSM in the jets plus missing transverse momentum channel
- The Z/ γ ratio is also a crucial theoretical input for new physics searches
- Used for determination of SM Z
 ightarrow
 u
 u + jets background

To constrain the background 3 control samples are defined

- Z(ℓℓ) + jets
 - Good theoretical knowledge
 - Low statistics

- $W(\ell \nu) + \text{jets}$
 - Good statistics
 - Theoretical uncertainty from *W*/*Z*
 - Affected by tt
 background

- $\gamma + jets$
 - Good statistics
 - Large theoretical uncertainty

 \rightarrow Precision V+jets measurements can increase the sensitivity to new physics

Transfer Factors

• The number of $Z \rightarrow \nu\nu$ events in the region of interest is predicted from the control samples, using the **Transfer Factor** method

$$N_{\textit{predicted}}^{\textit{signal}} = rac{N_{\textit{simulation}}^{\textit{signal}}}{N_{\textit{simulation}}^{\textit{control}}} imes N_{\textit{observed}}^{\textit{control}}$$

Most of the systematic effects are expected to cancel in the ratio

Nevertheless it is necessary to have:

- good statistic in the control sample
- good knowledge of simulations

Object definition - Jets

- Use PF jets with anti-kt clustering algorithm and distance parameter of 0.4.
- Jet energy corrections applied : L1FastJet, L2Relative, L3Absolute, Charged Hadron Subtraction
- Loose working point Jet ID

Selection variable	value	notes		
$-3.0 < \eta_{ m jet} < 3.0$				
Neutral Hadron Fraction	< 0.99	-		
Neutral EM Fraction	< 0.99	-		
Number of constituents	> 1	-		
Charged Hadron Fraction	> 0	only for $ \eta_{ m jet} < 2.4$		
Charged Multiplicity	> 0	only for $ \eta_{ m jet} < 2.4$		
Charged EM Fraction	< 0.99	only for $ \eta_{ m jet} < 2.4$		
$ \eta_{ m jet} >$ 3.0				
Neutral EM Fraction	< 0.90	-		
Number of Neutral Particles	> 10	-		

Object definition - Muons

- Use PF Muons with the *Tight* working point definition.
- relative combined isolation $I_{comb}^{rel} < 0.15$ with $\Delta R = 0.3$
- $\rho \times A_{\rm eff}$ corrections are applied to remove the effects of pileup

Selection variable	value
Reconstructed as Global Muon	
Particle-Flow muon	True
$\chi^2/$ ndof of global muon track fit	< 10
No. of Matched Stations	
No. of muon chamber hits in global-muon track fit	
Transverse Impact parameter w.r.t primary vertex d_{xy} (cm)	
Longitudinal distance of tracker track w.r.t primary vertex d_Z (cm)	
Number of pixel hits	
Number of tracker layers with hits	
Combined relative isolation I ^{rel}	< 0.15

Object definition - Photons

- Use cut based Tight Photon ID definition.
- PF isolation $\Delta R = 0.3$ and $\rho \times A_{eff}$ corrections are applied to remove the effects of pileup

Selection variable	Barrel	Endcap
Conversion safe electron veto	Yes	Yes
Single Tower H/E	0.05	0.05
$\sigma_{i\eta i\eta}$	0.0100	0.0268
PF charged hadron isolation	0.76	0.556
PF neutral hadron isolation	$0.97 + 0.014 \times p_{T,\gamma} + 0.000019 \times p_{T,\gamma}^2$	$2.09 + 0.014 \times p_{T,\gamma} + 0.000025 \times p_{T,\gamma}^2$
PF photon isolation	0.08 + 0.0053 $ imes$ $p_{\mathrm{T},\gamma}$	0.16 $+$ 0.0034 $ imes$ $p_{\mathrm{T},\gamma}$

Signal template

- The signal template is taken from the GJets MC, with nominal cuts.
- The photons has to be matched to gen level prompt photons.
- Photons cuts: $p_{
 m T}>$ 200 , $|\eta|<$ 1.4 , tight ID

SideBand template

- The sideband template is taken from Data with no cuts on sigma letaleta and ChHadlso $\in [5.0, 8.0]~\text{GeV}$
- Photons cuts: ${\it p}_{
 m T}>$ 200 , $|\eta|<$ 1.4

