Observation of $H \rightarrow bb$ decays in the VH production mode and first differential measurement with the ATLAS detector

IOP HEPP

Luca Ambroz - University of Oxford

• Observation of $H \rightarrow bb$ decays with the ATLAS detector

Phys. Lett. B 786 (2018) 59

• Measurement of the VH→bb production as a function of the vector-boson transfer momentum with the ATLAS detector ATLAS-CONF-2018-053

UK involvement

- Queen Mary University of London
- Royal Halloway University of London
- University College London (UCL)
- University of Birmingham
- University of Glasgow
- University of Liverpool
- University of Manchester
- University of Oxford

Observation of H→bb decays with the ATLAS detector

H→bb

Motivations:

- largest Branching Ratio;
- driving uncertainty for the total Higgs boson width;
- measurement of the Yukawa Coupling to down type quarks.
- Main challenge:
 - large QCD background.

ATLAS detector

Few key ingredients for searching for $H \rightarrow bb$:

- high b-tagging efficiency from the tracker;
- good energy resolution from the calorimeters.

Higgs production at the LHC

IOP HEPP | Luca Ambroz | 8th-10th April 2019

Search for VH→bb

- 2 b-jets per event.
- 0 or 1 more additional jet (in the 2-lepton channel also 2 or more).
- 3 decay channels according to the number of charged leptons (0, 1, 2).

Multivariate analysis

Several discriminating variables (m_{bb} , dR_{bb} , p_T^V) to discriminate between signal and background:

- I. construct a BDT to improve sensitivity;
- 2. perform separate training for each signal region;
- 3. transform BDT output to optimise signal sensitivity;
- 4. use a binned maximum likelihood fit to extract the signal strength (μ) .

Variable	0-lepton	1-lepton	2-lepton	
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	×	×	
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×		
$p_{\mathrm{T}}^{b_1}$	×	×	×	
$p_{\mathrm{T}}^{b_2}$	×	×	×	
m_{bb}	×	×	×	
$\Delta R(\vec{b_1},\vec{b_2})$	×	×	×	
$ \Delta\eta(ec{b_1},ec{b_2}) $	×			
$\Delta \phi(ec V, b ec b)$	×	×	×	
$ \Delta\eta(ec V, bec b) $			×	
$m_{ m eff}$	×			
$\min[\Delta \phi(ec{\ell},ec{b})]$		×		
$m^W_{ m T}$		×		
$m_{\ell\ell}$			×	
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			×	
$m_{ m top}$		×		
$ \Delta Y(\vec{V}, \vec{bb}) $		×		
	Only in 3-jet events			
$p_{\mathrm{T}}^{\mathrm{jet_3}}$	×	×	×	
m_{bbj}	×	×	×	

Profile likelihood fit

Events / 0.13

10⁴

10

10²

Events / 0.13

10³

10²

Data/Pred. 5.0

- Simultaneous fit of 14 analysis regions:
 - 8 signal regions across the three lepton channels.
 - 4 top control regions.
 - 2W + Heavy Flavours control regions.
 - In 0 lepton channel Z + Heavy Flavours estimated from the 2 lepton channel.
- ---- Pre-fit background 600 400 200 🔶 Data ATLAS VH, H \rightarrow bb (µ=1.16) √s = 13 TeV, 79.8 fb⁻¹ Diboson 0 lepton, 2 jets, 2 b-tags Data/Pred. $p^V \ge 150 \text{ GeV}$ Single top W+iets Z+jets Uncertaintv -0.6 -0.4 -0.2 02 0.6 0.8 ····· Pre-fit background BDT_{VH} output VH, $H \rightarrow b\overline{b} \times 10$ Events / 0.13 --- Data ATLAS VH, H \rightarrow bb (μ =1.16) $10^4 = \sqrt{s} = 13 \text{ TeV}, 79.8 \text{ fb}^{-1}$ Diboson 2 leptons, 2 jets, 2 b-tags Z+jets $p_{-}^{V} \geq 150 \text{ GeV}$ tīt Single top 10³ Uncertainty ····· Pre-fit background - VH. $H \rightarrow b\overline{b} \times 10$ 10^{2} -0.6 -0.4 -0.2 0.2 04 0.6 0.8 0 BDT_{VH} output 10 📥 Data ATLAS VH, H \rightarrow bb (μ =1.16) √s = 13 TeV, 79.8 fb⁻¹ Diboson Data/Pred 1 lepton, 2 jets, 2 b-tags ≥ 150 GeV Single top 0.5 Multiiet -0.8 -0.6 -0.4 -0.2 0 W+jets 0.2 0.4 0.6 0.8 Z+jets BDT_{VH} output Uncertainty ····· Pre-fit background Events / 50 1400 1200 VH. $H \rightarrow b\overline{b} \times 20$ -- Data ATLAS WH, H \rightarrow bb (μ =1.16) √s = 13 TeV, 79.8 fb⁻¹ Ħ 2 leptons, 2 jets, 2 b-tags Single top 75 GeV $\leq p_{-}^{V} < 150$ GeV Uncertainty ····· Pre-fit background 1000 800 600 0.4 0.6 0.8 -0.6 -0.4 -0.2 0 0.2 400 BDT_{VH} output 200 • Systematics described by nuisance parameters. Data/Pred. 1 2.0

ATLAS

√s = 13 TeV, 79.8 fb⁻¹

 $p_{-}^{V} \geq 150 \text{ GeV}$

W+HF CR

1 lepton, 2 jets, 2 b-tags

Events ,

1400

1200

1000

800

📥 Data

Ħ

Diboson

Single top

Multijet

W+jets Z+jets Uncertainty

VH, H \rightarrow bb (μ =1.16)

• Normalisation of signal and main bkgs left free floating.

300

250

m_{bb} [GeV]

200

100

150

IOP HEPP | Luca Ambroz | 8th-10th April 2019

VH→bb results

• Measured signal strength (μ) for VH \rightarrow bb with 80fb⁻¹ of data:

$$\mu_{VH}^{b\bar{b}} = \frac{\sigma_{obs}}{\sigma_{SM}} = 1.16^{+0.27}_{-0.25}$$

- Observed significance 4.9 σ (expected 4.3 σ).
- Contributions for the individual lepton channels:

Signal strength	Signal strength	p_0		Significance	
		Exp.	Obs.	Exp.	Obs.
0-lepton	$1.04_{-0.32}^{+0.34}$	$9.5 \cdot 10^{-4}$	$5.1 \cdot 10^{-4}$	3.1	3.3
1-lepton	$1.09_{-0.42}^{+0.46}$	$8.7 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$	2.4	2.6
2-lepton	$1.38\substack{+0.46\\-0.42}$	$4.0 \cdot 10^{-3}$	$3.3\cdot 10^{-4}$	2.6	3.4
$VH, H \rightarrow b\bar{b}$ combination	$1.16_{-0.25}^{+0.27}$	$7.3 \cdot 10^{-6}$	$5.3 \cdot 10^{-7}$	4.3	4.9

Systematic uncertainties

	Source of une	certainty	σ_{μ}	
	Total		0.259	
	Statistical		0.161	
	Systematic		0.203	
	Experimental uncertainties			
	Jets		0.035	
	$E_{\mathrm{T}}^{\mathrm{miss}}$		0.014	
Elavourtaging	Leptons	0.009		
i lavour-lagging		b-jets	0.061	
calibrations	b-tagging	c-jets	0.042	
Calibrations		light-flavour jets	0.009	
		extrapolation	0.008	
	Pile-up		0.007	
	Luminosity		0.023	
	Theoretical and modelling uncertainties			
Signal and	Signal		0.094	
Background				
Dackground	Floating nor	0.035		
modelling	Z + jets	0.055		
J	W + jets		0.060	
	$t\overline{t}$	0.050		
	Single top quark		0.028	
	Diboson		0.054	
Limited MC	Multi-jet		0.005	
statistics	MC statistics	0.070		

Analysis limited by **systematic uncertainties**

H→bb combination

• The VH, VBF and ttH analysis of Run-1 and Run-2 have beed combined:

• The result is the **observation** of $H \rightarrow$ bb decays at 5.4 σ (5.5 σ expected).

Measurement of the VH \rightarrow bb production as a function of the vector-boson transfer momentum

VH→bb differential measurement

 Definition of five fiducial differential cross section regions (STXS framework) according to p_T of the W/Z boson:

- Analysis strategy kept the same as the "observation analysis" (event selection, MVA training...)
- New assessment of signal systematics.
- p_T^V regions potentially sensitive to **BSM** physics.

IOP HEPP | Luca Ambroz | 8th-10th April 2019

Measured cross-sections

Results compatible with the Standard Model

Effective Field Theories

• The SM Lagrangian can be expanded with and Effective Field Theory parametrisation:

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} c_i^{(6)} \mathcal{O}_i^{(6)} / \Lambda^2$$

 The cross-sections measured are particularly sensitive to these new coefficients.

• I-D fits of the coefficients for the effective Lagrangian have been performed.

Conclusions

H→bb decays at 5.4σ (5.5σ expected) have been
 observed with the ATLAS detector:

$$\mu_{VH}^{b\bar{b}} = \frac{\sigma_{obs}}{\sigma_{SM}} = 1.16^{+0.27}_{-0.25}$$

• VH→bb **cross-section measurements** have been performed.

• All the measurements are consistent with the Standard Model.

