Low Energy? Think Positive!

UV Constraints on IR Effective Field Theories

Low Energy? Think Positive!

UV Constraints on IR Effective Field Theories

"Positivity" Bounds

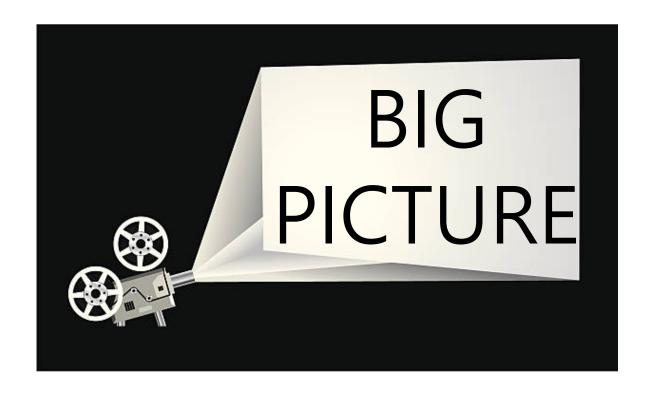
Low Energy? Think Positive!

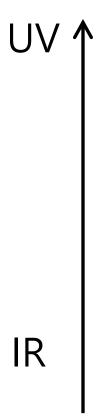
UV Constraints on IR Effective Field Theories

"Positivity" Bounds

Vector Boson Scattering

B-physics Anomalies



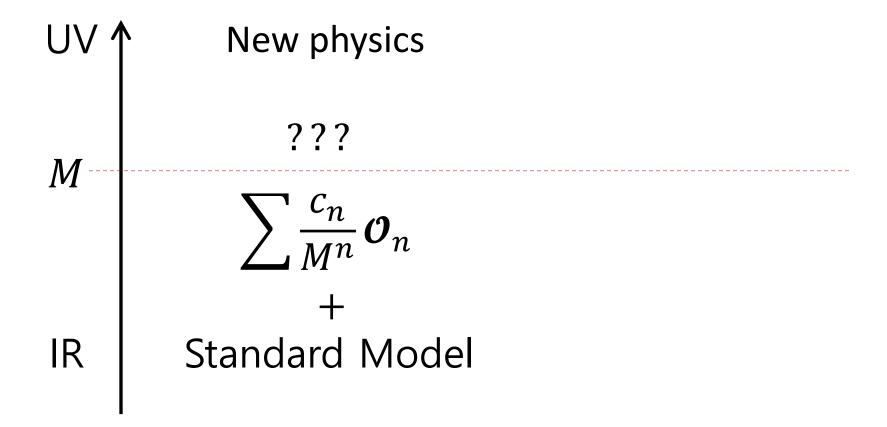


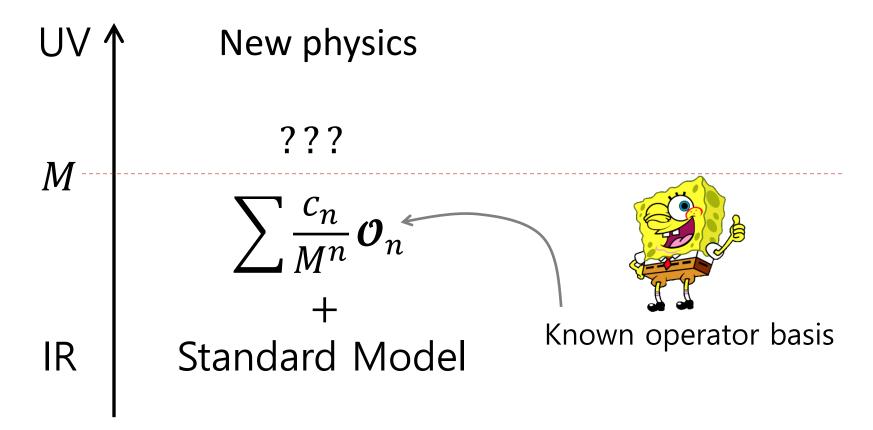
IR

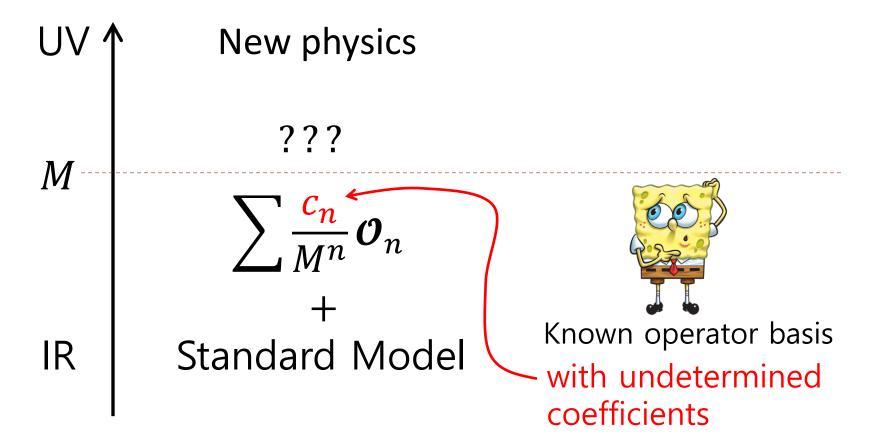
Standard Model

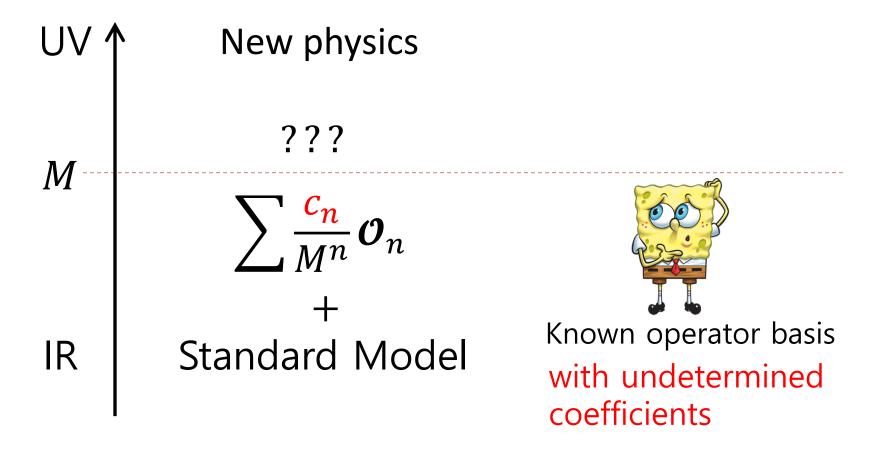
UV \ New physics

IR Standard Model

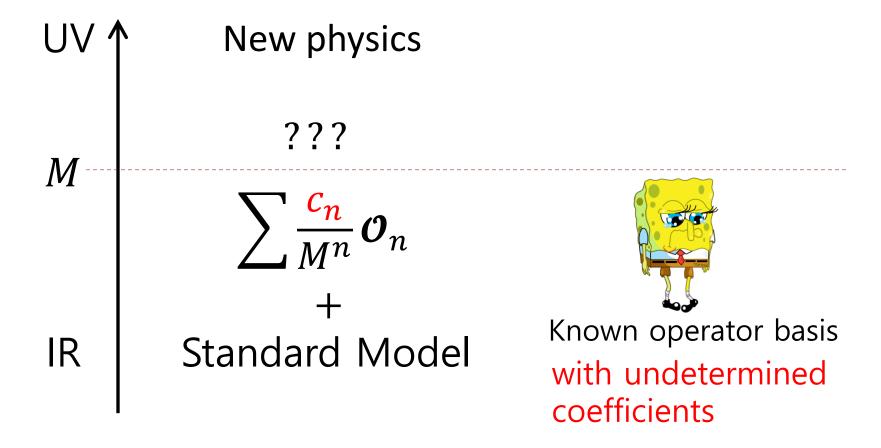




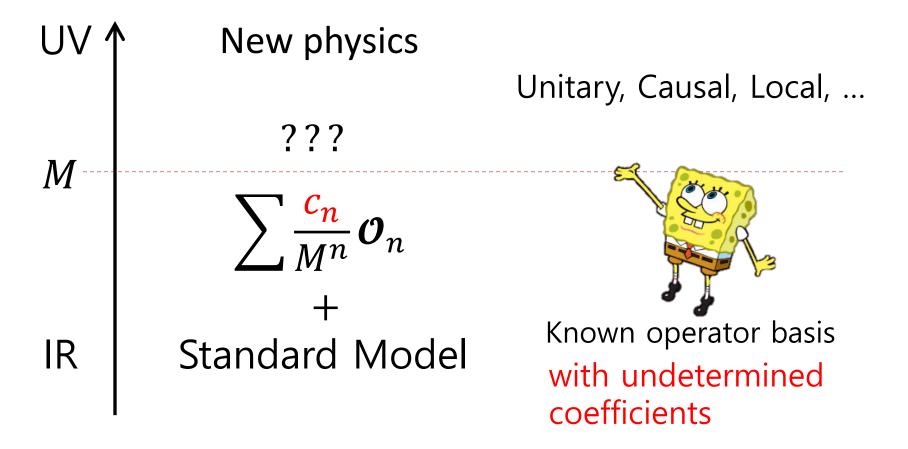




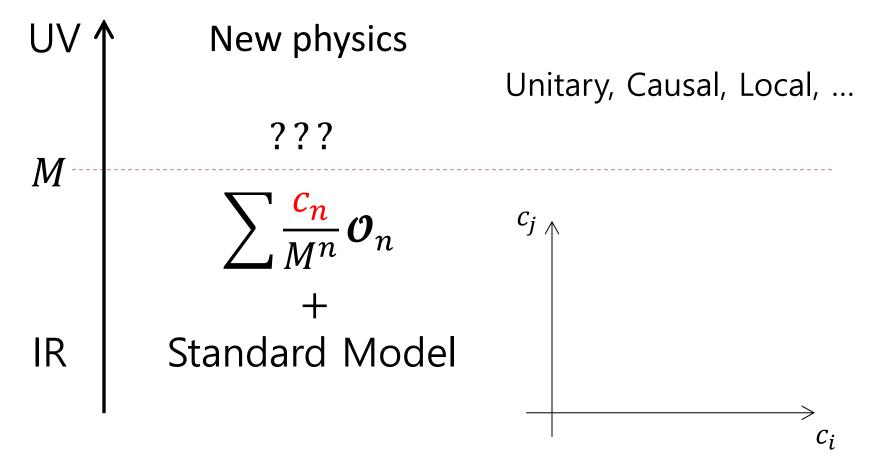
(1) Need many measurements



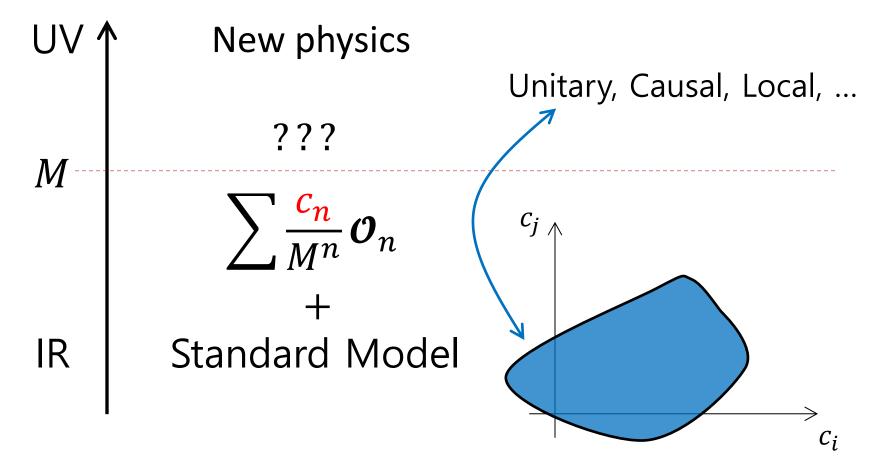
- (1) Need many measurements
- (2) No deeper understanding of UV physics



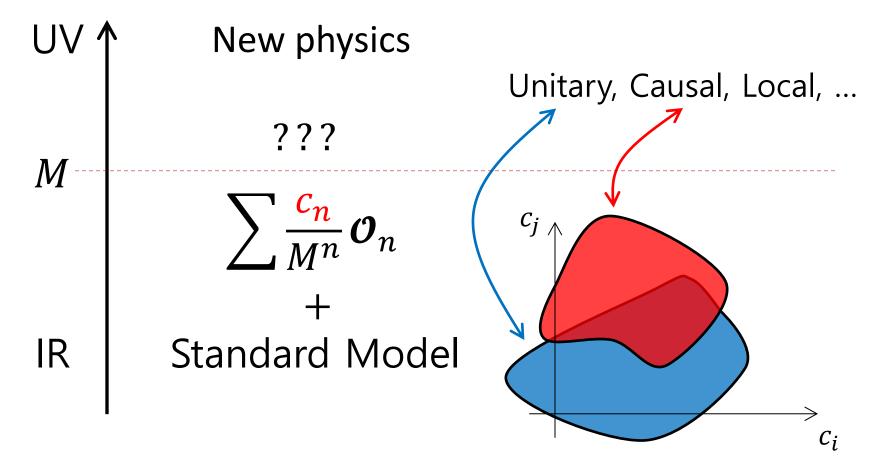
- (1) Need many measurements
- (2) No deeper understanding of UV physics



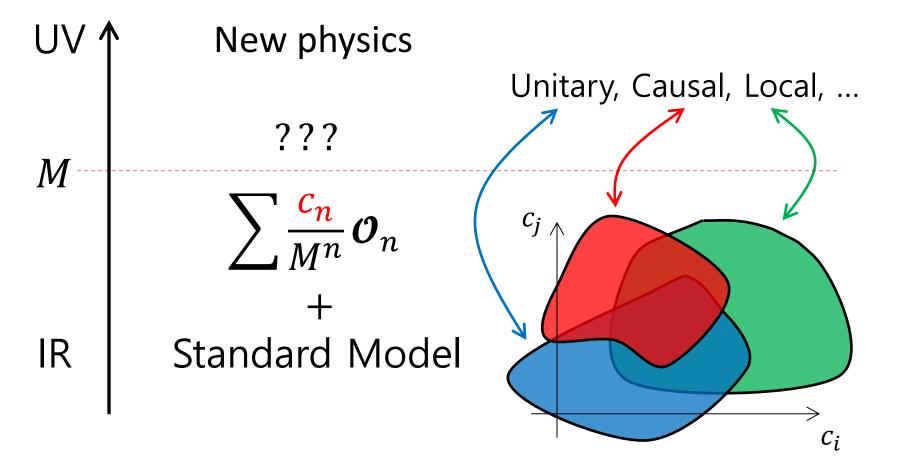
- (1) Need many measurements
- (2) No deeper understanding of UV physics



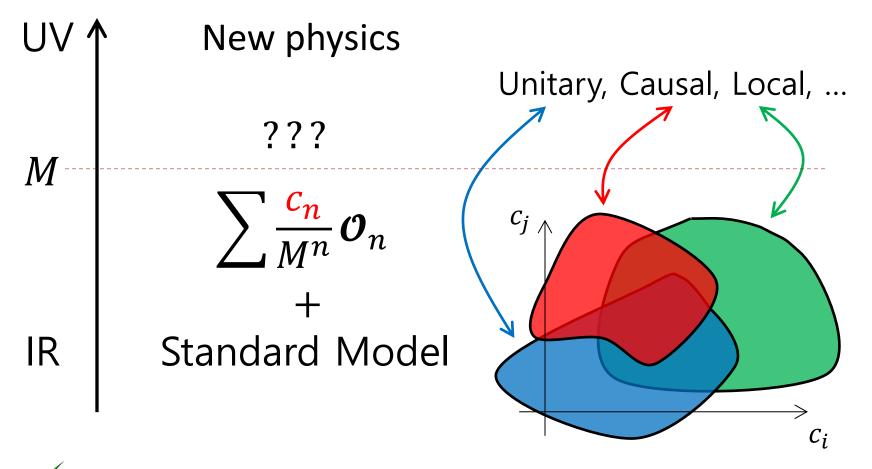
- (1) Need many measurements
- (2) No deeper understanding of UV physics



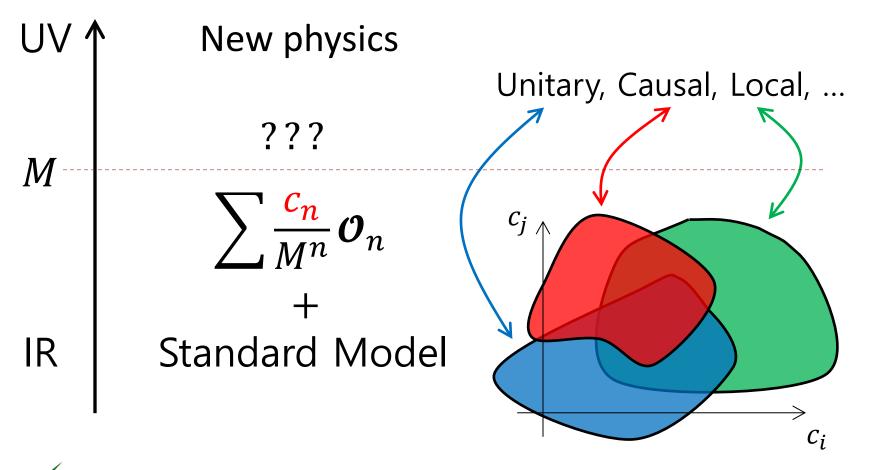
- (1) Need many measurements
- (2) No deeper understanding of UV physics



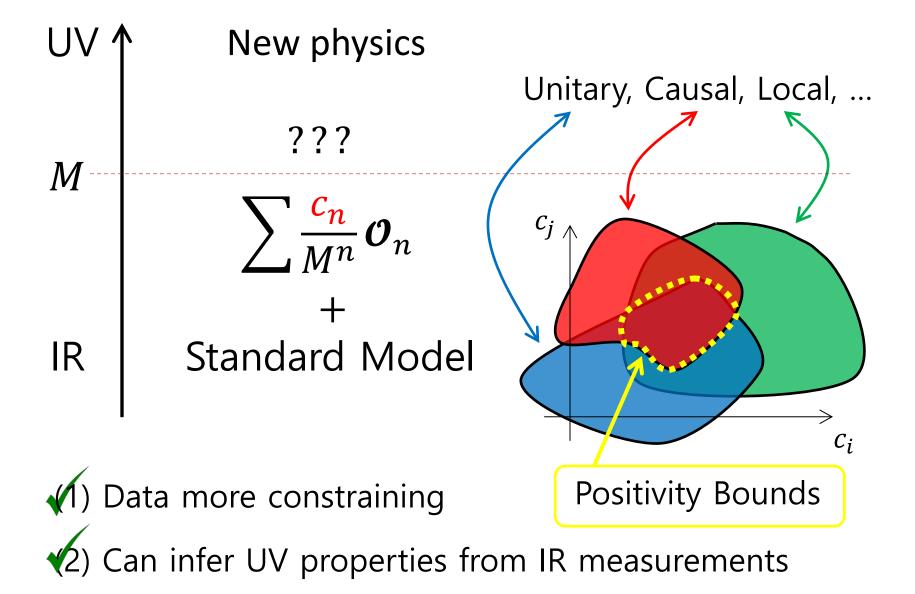
- (1) Need many measurements
- (2) No deeper understanding of UV physics



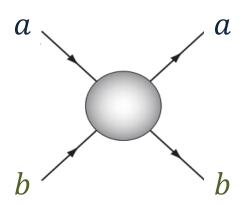
- (1) Data more constraining
- (2) No deeper understanding of UV physics



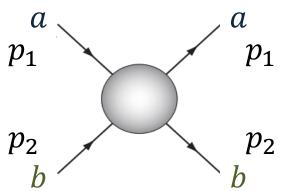
- (1) Data more constraining
- (2) Can infer UV properties from IR measurements



[Adams et al., 0602178] [SM et al., in prep]



[Adams et al., 0602178] [SM et al., in prep]



$$s = -(p_1 + p_2)^2$$

$$p_1$$

$$p_2$$

$$p_2$$

$$p_3$$

$$p_4$$

$$p_2$$

$$p_4$$

$$p_2$$

$$p_4$$

$$p_2$$

$$p_4$$

$$p_4$$

$$p_2$$

$$p_4$$

$$p_4$$

$$p_5$$

$$p_7$$

$$p_8$$

$$p_8$$

$$p_8$$

$$p_8$$

$$p_9$$

$$p$$

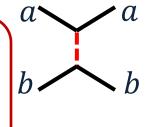
$$s = -(p_1 + p_2)^2$$
 p_1 p_2 p_2 p_2 p_2 p_3 p_4 p_4 p_5 p_6 p_6 p_7 p_8 p_8 p_9 p

If new physics is <u>unitary</u> and <u>causal</u>, then:

$$s = -(p_1 + p_2)^2$$
 p_1 p_2 p_2 p_2 p_2 p_3 p_4 p_4 p_5 p_6 p_6 p_7 p_8 p_8 p_9 p

If new physics is <u>unitary</u> and <u>causal</u>, then:

$$c_s < 0 \implies \text{New physics in } t \text{ channel}$$



$$s = -(p_1 + p_2)^2$$

$$p_1$$

$$p_2$$

$$p_2$$

$$p_3$$

$$p_4$$

$$p_4$$

$$p_2$$

$$p_3$$

$$p_4$$

$$p_4$$

$$p_2$$

$$p_4$$

$$p_5$$

$$p_6$$

$$p_7$$

$$p_8$$

$$p_8$$

$$p_8$$

$$p_8$$

$$p_9$$

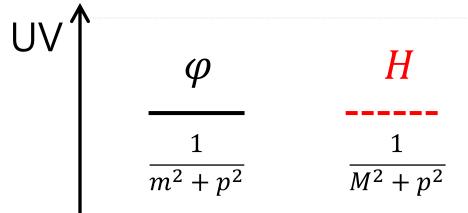
$$p$$

If new physics is <u>unitary</u> and <u>causal</u>, then:

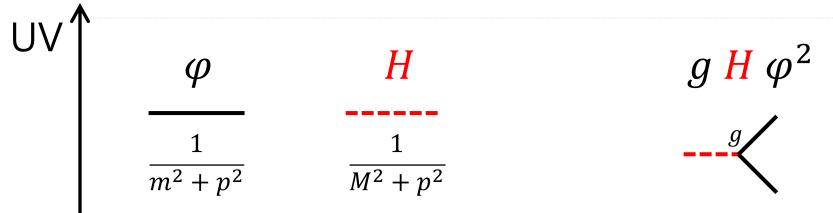
$$c_s < 0 \Rightarrow \text{New physics in } t \text{ channel} b$$
 $c_{ss} < 0 \Rightarrow \text{New physics is non-local}$

$$c_{ss} < 0 \Rightarrow \text{New physics is non-local}$$

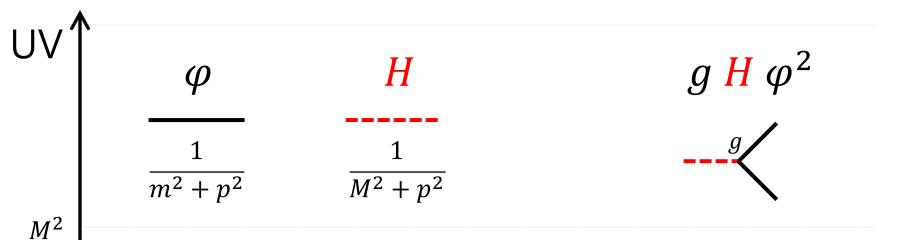
$$c_{ss} < 0 \Rightarrow \text{New physics is non-local}$$



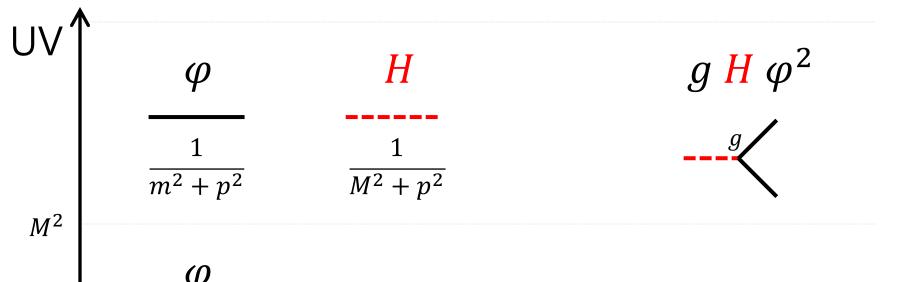
$$c_{ss} < 0 \Rightarrow \text{New physics is non-local}$$



$$c_{ss} < 0 \Rightarrow \text{New physics is non-local}$$



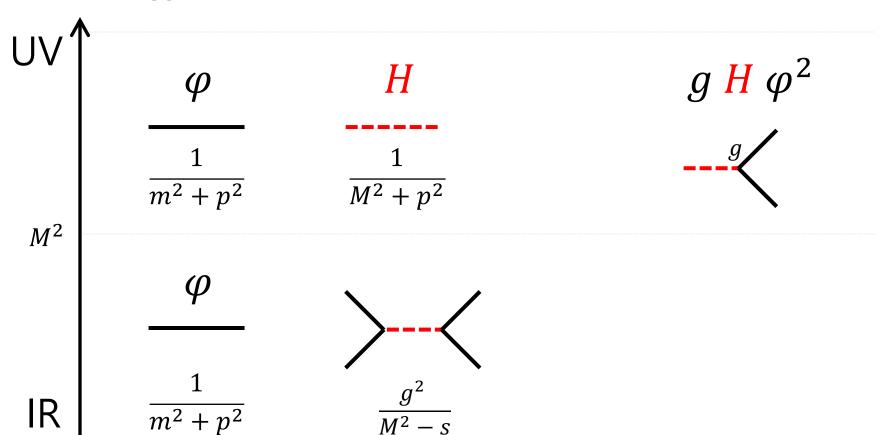
$$c_{ss} < 0 \Rightarrow \text{New physics is non-local}$$



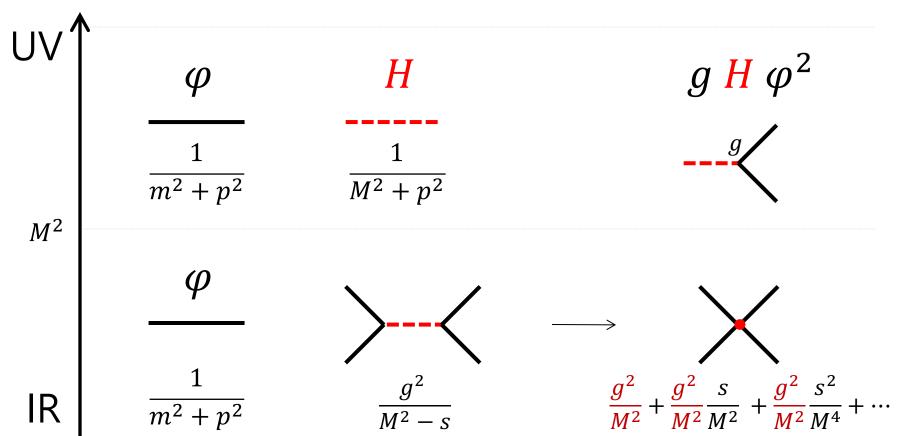
IR |

$$\overline{m^2 + p^2}$$

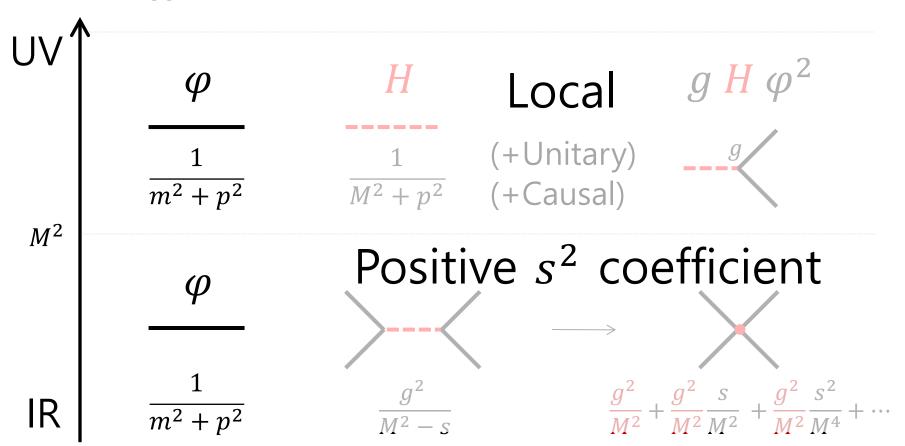
$$c_{ss} < 0 \Rightarrow \text{New physics is non-local}$$



$$c_{ss} < 0 \implies \text{New physics is non-local}$$



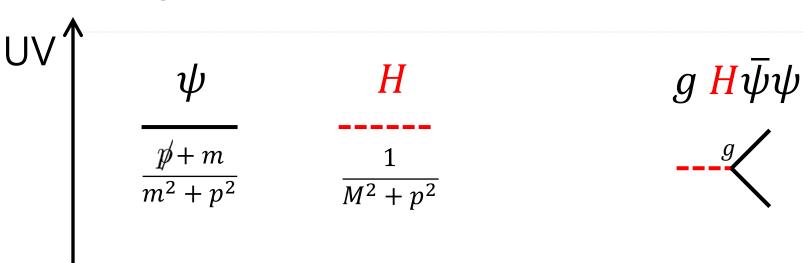
$$c_{ss} < 0 \Rightarrow \text{New physics is non-local}$$



New *t*-channel Physics

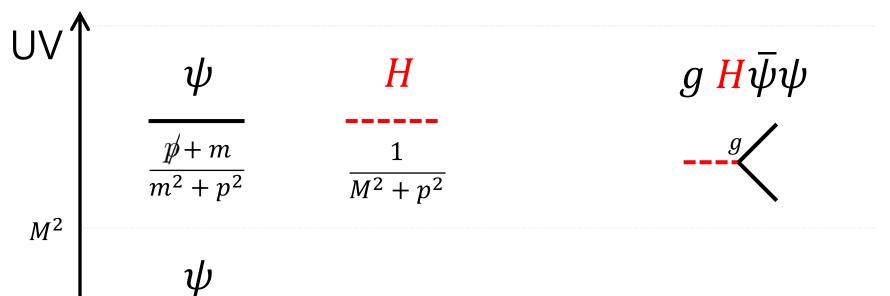
$$c_s < 0 \Rightarrow \text{New physics in } t \text{ channel}$$

$$c_{s} < 0 \Rightarrow \text{New physics in } t \text{ channel}$$



IR

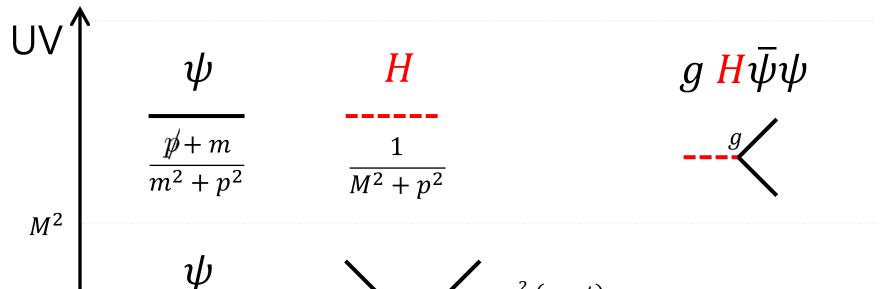
$$c_s < 0 \Rightarrow \text{New physics in } t \text{ channel}$$



IR |

$$\frac{\cancel{p} + m}{m^2 + p^2}$$

$$c_{s} < 0 \Rightarrow \text{New physics in } t \text{ channel}$$



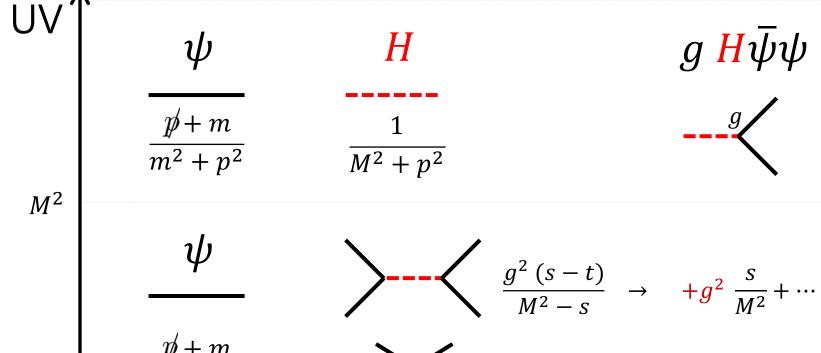
IR

$$\frac{g^{2}(s-t)}{M^{2}-s}$$

$$\frac{p+m}{m^{2}+p^{2}}$$

$$\frac{g^{2}(t-s)}{M^{2}-t}$$

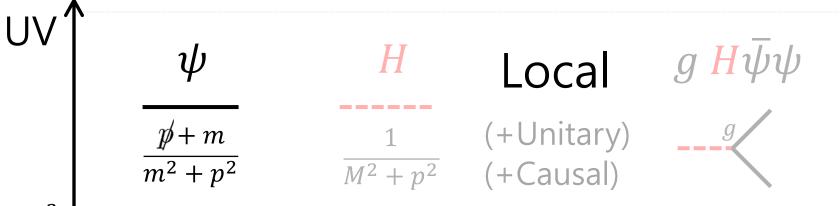
$$c_s < 0 \implies \text{New physics in } t \text{ channel}$$



IR

$$\frac{g^2 (t-s)}{M^2-t} \rightarrow -g^2 \frac{s}{M^2} + \cdots$$

$$c_{s} < 0 \Rightarrow \text{New physics in } t \text{ channel}$$



 M^2

$$\frac{\cancel{p}+m}{m^2+n^2}$$

$$\frac{g^2(s-t)}{M^2-s} \rightarrow +g^2\frac{s}{M^2}+\cdots$$

s channel c_s always positive

t channel c_s can be negative

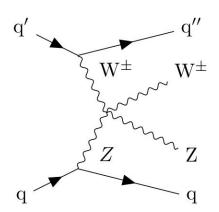
$$\frac{g^2 (t-s)}{M^2-t} \rightarrow -g^2 \frac{s}{M^2} + \cdots$$

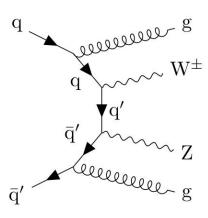
Scott Melville

CMS Collaboration, 1901.04060

Measurement of electroweak WZ boson production and search for new physics in WZ + two jets events in pp collisions at $\sqrt{s} = 13$ TeV

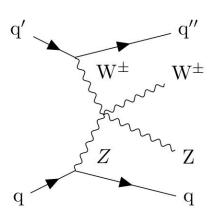
SM:

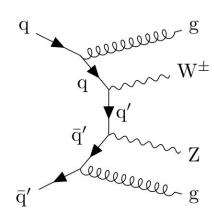




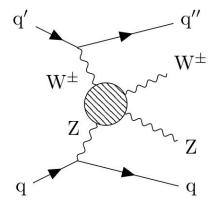
Measurement of electroweak WZ boson production and search for new physics in WZ + two jets events in pp collisions at $\sqrt{s}=13$ TeV

SM:



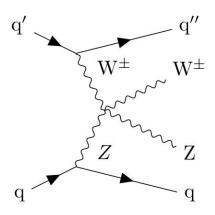


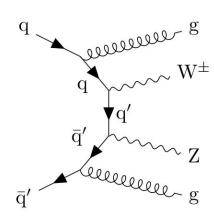
BSM:



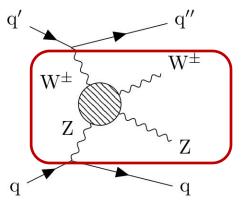
Measurement of electroweak WZ boson production and search for new physics in WZ + two jets events in pp collisions at $\sqrt{s} = 13$ TeV

SM:





BSM:



$$\mathcal{L}_{\mathrm{EFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{\mathsf{f}_{i}}{\Lambda^{4}} O_{i}$$
 $V = Z, W^{\pm}, \gamma$

$$\mathcal{L}_{\mathrm{EFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{\mathsf{f}_{i}}{\Lambda^{4}} O_{i}$$
 $V = Z, W^{\pm}, \gamma$

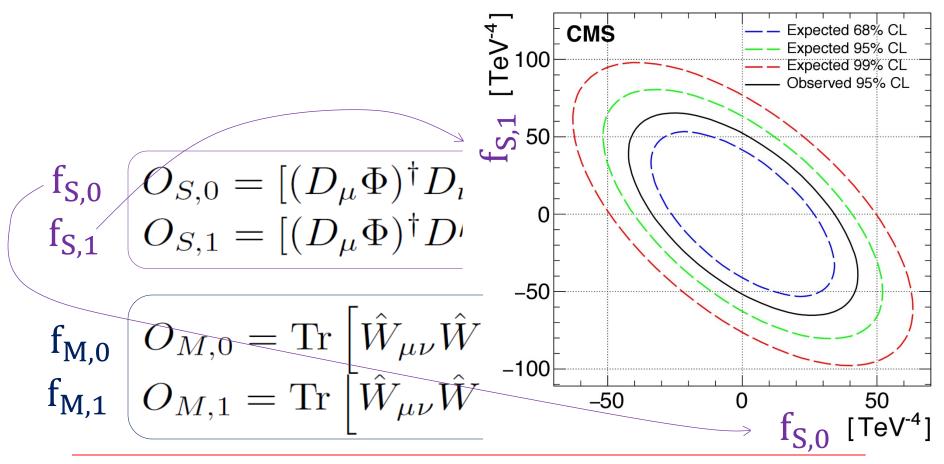
$$\begin{array}{ll} \mathbf{f_{S,0}} & O_{S,0} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\mu}\Phi)^{\dagger}D^{\nu}\Phi] \\ \mathbf{f_{S,1}} & O_{S,1} = [(D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi] \times [(D_{\nu}\Phi)^{\dagger}D^{\nu}\Phi] \end{array}$$

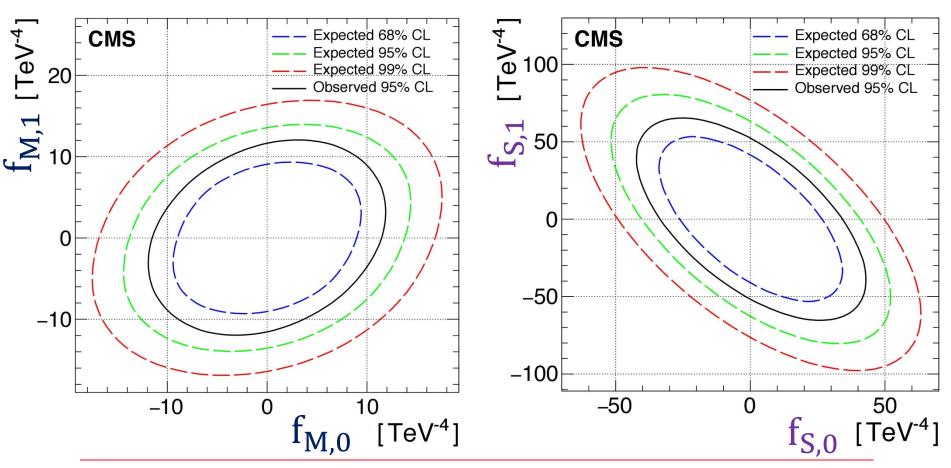
$$\mathcal{L}_{\mathrm{EFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{\mathsf{f}_{i}}{\Lambda^{4}} O_{i}$$

$$V = Z, W^{\pm}, \gamma$$

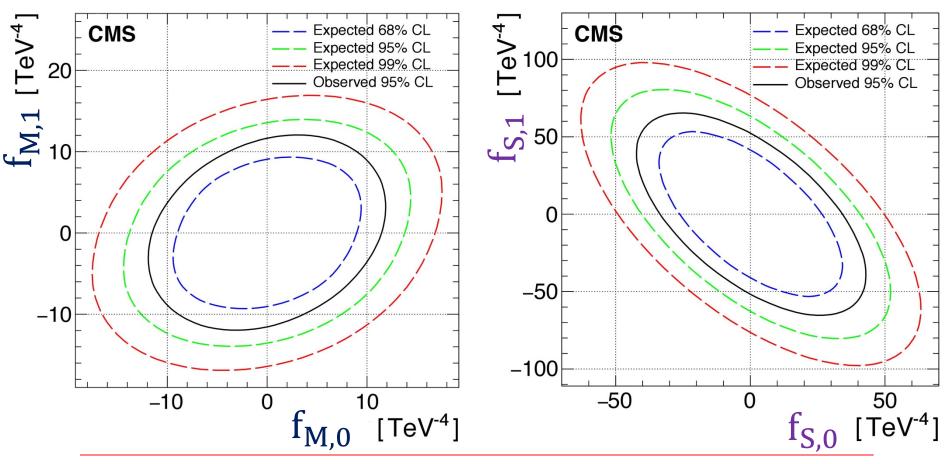
$$\begin{array}{l} \mathbf{f_{S,0}} & O_{S,0} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\mu}\Phi)^{\dagger}D^{\nu}\Phi] \\ \mathbf{f_{S,1}} & O_{S,1} = [(D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi] \times [(D_{\nu}\Phi)^{\dagger}D^{\nu}\Phi] \end{array}$$

$$\mathbf{f_{M,0}} \begin{bmatrix} O_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\ O_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] \end{bmatrix}$$

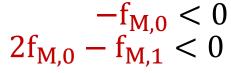


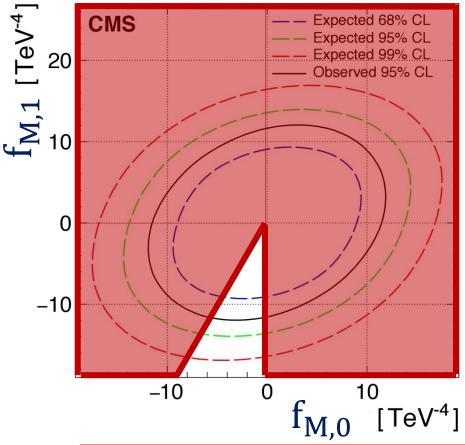


New physics non-local if:



New physics non-local if:

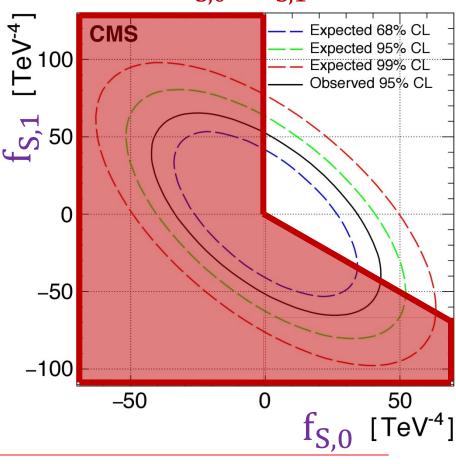


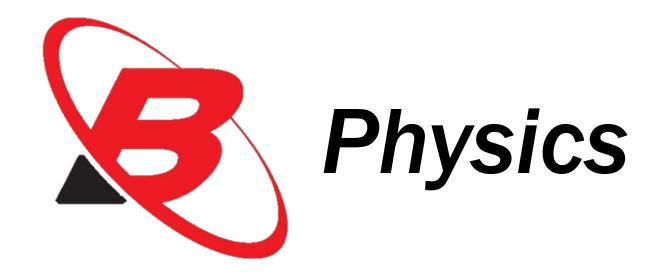


[Zhang, Zhou, 1808.00010] 1902.08977] [Bi et al,

$$f_{S,0} < 0$$

 $f_{S,0} + f_{S,1} < 0$





$$\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}}$$

$$-\frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^{\ell} \left[C_T \left(\bar{Q}_L^i \gamma_{\mu} \sigma^a Q_L^j \right) (\bar{L}_L^{\alpha} \gamma^{\mu} \sigma^a L_L^{\beta}) \right]$$

$$+ C_S \left(\bar{Q}_L^i \gamma_{\mu} Q_L^j \right) (\bar{L}_L^{\alpha} \gamma^{\mu} L_L^{\beta})$$

$$\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}}$$

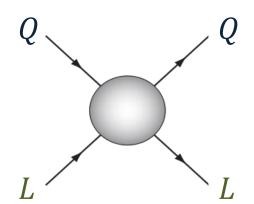
$$-\frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^{\ell} \left[\underline{C_T} \left(\bar{Q}_L^i \gamma_{\mu} \sigma^a Q_L^j \right) (\bar{L}_L^{\alpha} \gamma^{\mu} \sigma^a L_L^{\beta}) \right.$$

$$+ \underline{C_S} \left(\bar{Q}_L^i \gamma_{\mu} Q_L^j \right) (\bar{L}_L^{\alpha} \gamma^{\mu} L_L^{\beta}) \right]$$

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM}$$

$$-\frac{1}{v^2}\lambda_{ij}^q\lambda_{\alpha\beta}^\ell \left[\underline{C_T} \left(\bar{Q}_L^i\gamma_\mu\sigma^aQ_L^j\right)(\bar{L}_L^\alpha\gamma^\mu\sigma^aL_L^\beta)\right]$$

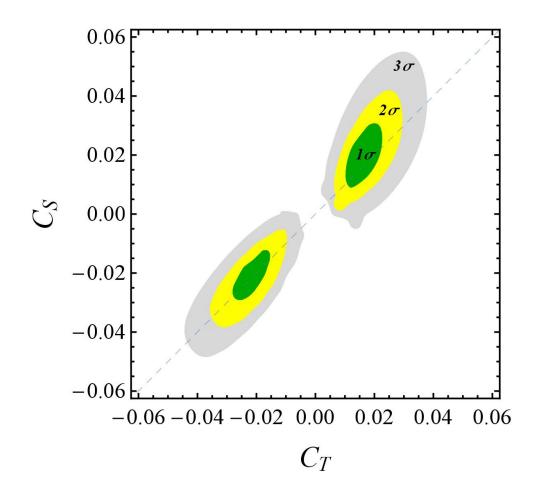
$$+\underline{C_S} (\bar{Q}_L^i \gamma_\mu Q_L^j) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta)$$



$$A_{EFT}(s) \sim c_s s$$

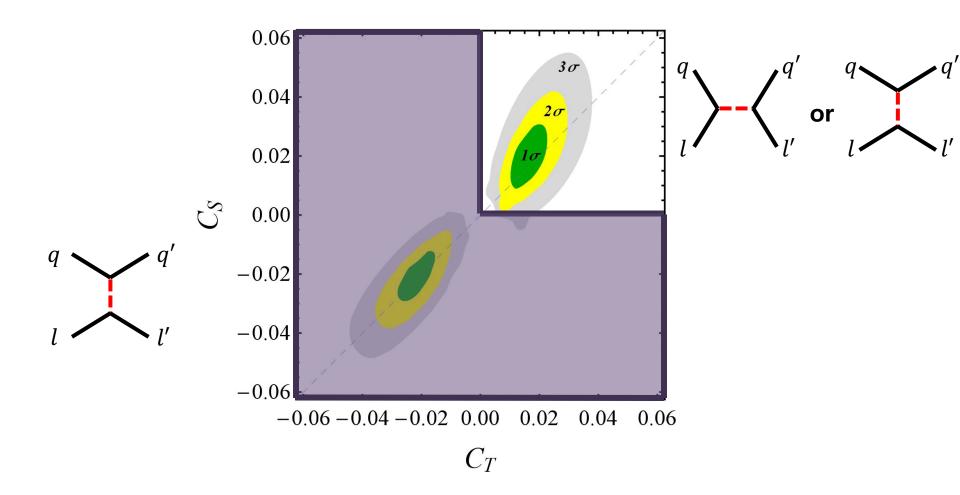
Buttazzo et al, 1706.07808

B-physics anomalies: a guide to combined explanations



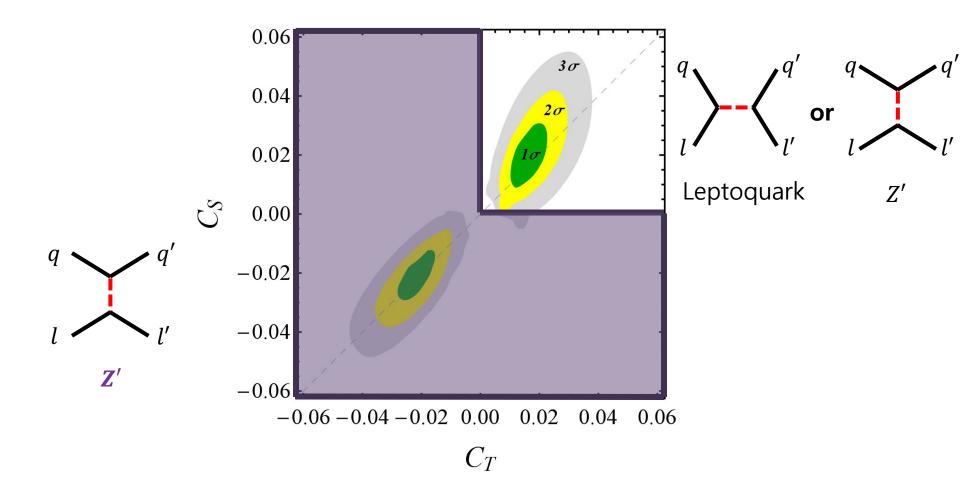
Buttazzo et al, 1706.07808

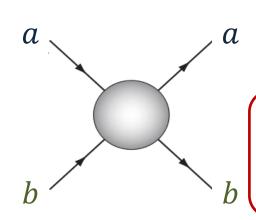
B-physics anomalies: a guide to combined explanations



Buttazzo et al, 1706.07808

B-physics anomalies: a guide to combined explanations

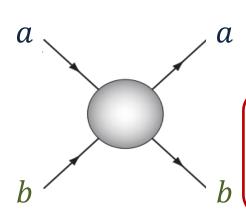




$$A_{EFT}(s) = c_0 + c_s \frac{s}{M^2} + c_{ss} \frac{s^2}{M^4} + \cdots$$

$$c_s < 0 \implies \text{New physics in } t \text{ channel}$$

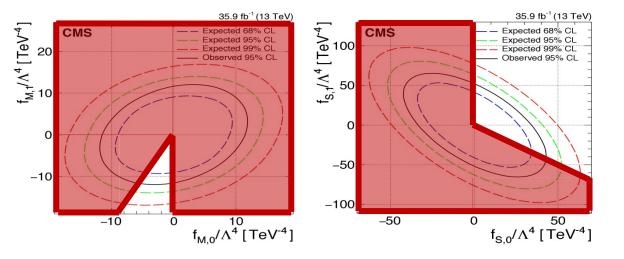
$$c_s < 0 \implies \text{New physics in } t \text{ channel}$$
 $c_{ss} < 0 \implies \text{New physics is non-local}$



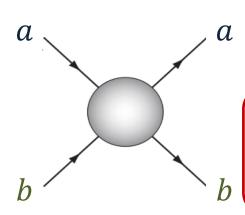
$$A_{EFT}(s) = c_0 + c_s \frac{s}{M^2} + c_{ss} \frac{s^2}{M^4} + \cdots$$

$$c_{s} < 0 \implies \text{New physics in } t \text{ channel}$$
 $c_{ss} < 0 \implies \text{New physics is non-local}$

$$c_{ss} < 0 \quad \Rightarrow \quad \text{New physics is non-local}$$



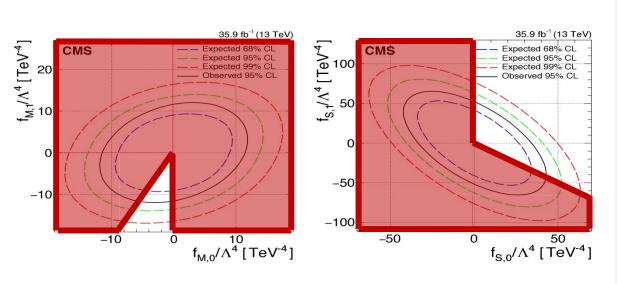
Vector Boson Scattering

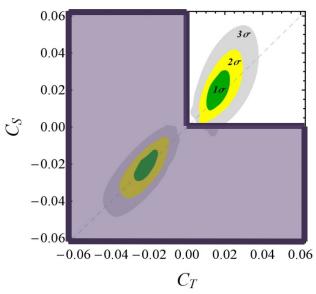


$$A_{EFT}(s) = c_0 + c_s \frac{s}{M^2} + c_{ss} \frac{s^2}{M^4} + \cdots$$

$$c_s < 0 \implies \text{New physics in } t \text{ channel}$$

$$c_{ss} < 0 \Rightarrow \text{New physics is non-local}$$





B-physics

Backup Slides

Observable	Experimental bound	Linearised expression
$R_{D^{(*)}}^{ au\ell}$	1.237 ± 0.053	$1 + 2C_T(1 - \lambda_{sb}^q V_{tb}^* / V_{ts}^*)(1 - \lambda_{\mu\mu}^{\ell} / 2)$
$\Delta C_9^{\mu} = -\Delta C_{10}^{\mu}$	-0.61 ± 0.12 [36]	$-\frac{\pi}{\alpha_{\rm em}V_{tb}V_{ts}^*}\lambda_{\mu\mu}^{\ell}\lambda_{sb}^{q}(C_T+C_S)$
$R_{b\rightarrow c}^{\mu e}-1$	0.00 ± 0.02	$2C_T(1-\lambda_{sb}^q V_{tb}^*/V_{ts}^*)\lambda_{\mu\mu}^{\ell}$
$B_{K^{(*)}\nu\bar{\nu}}$	0.0 ± 2.6	$1 + \frac{2}{3} \frac{\pi}{\alpha_{\rm em} V_{tb} V_{ts}^* C_{\nu}^{\rm SM}} (C_T - C_S) \lambda_{sb}^q (1 + \lambda_{\mu\mu}^{\ell})$
$\delta g^Z_{ au_L}$	-0.0002 ± 0.0006	$0.033C_T - 0.043C_S$
$\delta g^Z_{ u_{ au}}$	-0.0040 ± 0.0021	$-0.033C_T - 0.043C_S$
$ g_{ au}^W/g_{\ell}^W $	1.00097 ± 0.00098	$1 - 0.084C_T$
$\mathcal{B}(au o 3\mu)$	$(0.0 \pm 0.6) \times 10^{-8}$	$2.5 \times 10^{-4} (C_S - C_T)^2 (\lambda_{\tau\mu}^{\ell})^2$

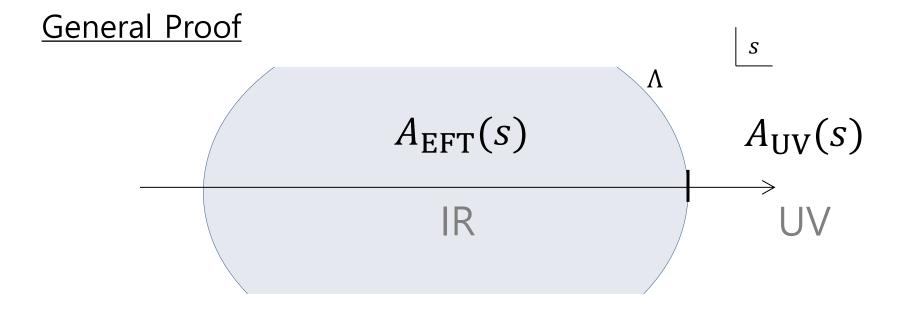
General Proof

IR UV

General Proof $A_{\rm EFT}(s)$

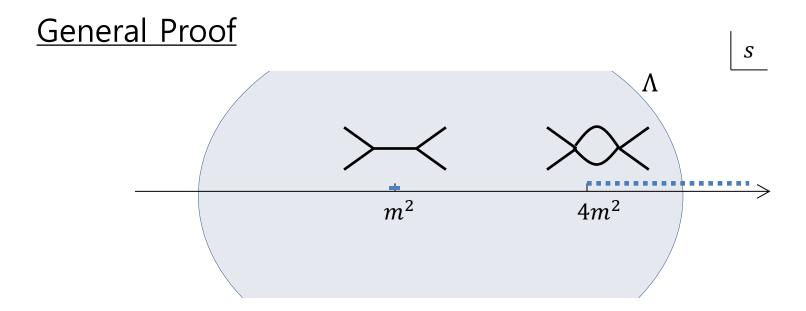
IR

UV



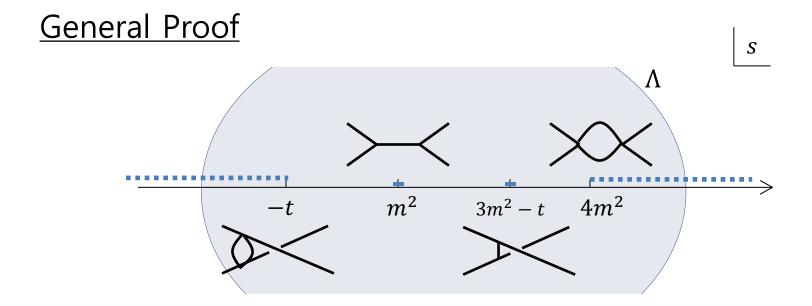
Causality

 \Rightarrow A(s) is analytic (up to known poles & branch cuts)



Causality

 \Rightarrow A(s) is analytic (up to known poles & branch cuts)



Causality

 \Rightarrow A(s) is analytic (up to known poles & branch cuts)

