A generic anti-QCD tagger

J.A.Aguilar-Saavedra IFT-UAM/CSIC

3rd RED LHC workshop, May 7th 2019

Motivation in brief

- New physics may not give nice leptonic signals
 - Example of model given at the end
- Cascade decays of heavy resonances often give jets as final state object

It turns out that standard dedicated tools that are used to `tag' 2-pronged decays [from W/Z bosons] are not able to detect multi-pronged decays [stealth bosons]

It is compulsory to develop generic tools that are sensitive to various types of new physics signals

Main idea: instead of focusing on the signal, which we don't know how it is, we focus on background, which we know well.

Proof of concept: first generic anti-QCD tagger described here. Further possibilities can be developed...

JAAS, Collins, Mishra, 1709.01087

Generic anti-QCD tagger

Machine learning techniques allow to build generic anti-QCD taggers that efficiently discriminate multipronged jets [considered as signals] against jets from quarks and gluons [considered as background].

These taggers use as input a generalised set of variables measuring the jetN-subjettiness [i.e. how it looks N-pronged]Datta, Larkoski, 1704.08249

$$\tau_N^{(\beta)} = \frac{1}{p_{TJ}} \sum_i p_{Ti} \min\left\{\Delta R_{1i}^\beta, \Delta R_{2i}^\beta, \dots, \Delta R_{Ni}^\beta\right\}$$

of which the commonly used T_{21} corresponds to T_2^{1}/T_1^{1} .

These variables are the input to a <u>neural network</u> that is trained using

- signals: jets with 2, 3 and 4-pronged decays, model-agnostic.
- background: jets from quarks and gluons.

And the tagger even learns to identify signals for which it is not trained.

Example: tagger performance for particles with M = 80 GeV

Example: tagger performance for particles with M = 400 GeV

The tagger works well for various topologies, even for $H_1^0 \rightarrow gg$ and a six-pronged jet not trained for.

FAQ #I

Q: Can't you use T ratios for multi-pronged jets?

A: Not really. They are not very efficient and, in addition, you don't know a priori which τ ratio you should use.

Note that T ratios actually reduce the signal significance

FAQ #2

Q: But a dedicated tagger performs better...

A: Certainly, but the generic tagger performs better for other [generic] signals different from the one trained on

Blue: W bosons Green: stealth bosons $M_A = 30 \text{ GeV}$ Orange: $H_1^0 \rightarrow uuuu M_A = 30 \text{ GeV}$

Solid: generic tagger Dotted: dedicated W tagger

FAQ #3

Q: Can't I just use a 4-pronged dedicated tagger?

A: (sigh) It performs worse even for 4-pronged signals not trained for... [NNs are trained on signal jets corresponding to decays with flat phase space]

Comparison with dedicated WW tagger for particles with M = 400 GeV

Blue: $H_1^0 \rightarrow WW$ Orange: $H_1^0 \rightarrow ZA$ $M_A = 160 \text{ GeV}$ Purple: $H_1^0 \rightarrow tt$

Solid: generic tagger Dashed: dedicated tagger

The dedicated WW tagger completely fails for *tt*

FAQ #4

Q: This is nice, but how can I do it? You show one tagger for M = 80, one tagger for M = 400...

A: There are several ways to achieve mass decorrelation:

- Preprocessing
- Adversarial networks
- ... [illustrate me, please]

Decorrelation with preprocessing

Mass-decorrelated taggers that do not shape background can spot signals with masses different from those used for training

In detail:

• You need to <u>select some jet mass interval</u> for training but the preprocessing of the input makes the tagger insensitive to that

In detail:

• You need to select some jet p_T interval for training but the preprocessing of the input makes the tagger insensitive to that

Application

JAAS, Joaquim, coming soon!

Model: leptophobic Z' boson [if not, forget about it]

- Extra matter required for anomaly cancellation
 - simplest possiblities: extra quarks [model 1] or leptons [model 2]
- Z´ needs new scalar to get mass
 - simplest and less troublesome: singlet χ
- New fermions need mass too...
- singlet χ can do it, and this fixes the U(1)' hypercharge
- And you can have two singlets χ_1 and χ_2
 - in which case you have cascade decays!

Possibility of dark matter Caron et al. 1807.07921 Generic* search. Tagger fixed to have 10² background rejection.

 $Z' \rightarrow jj, Z' \rightarrow tt, Z' \rightarrow H_3 H_4$ [stealth bosons] with M = 80 GeV

Generic* search. Tagger fixed to have 10² background rejection.

 $Z' \rightarrow jj, Z' \rightarrow tt, Z' \rightarrow H_3 H_4$ [stealth bosons] with M = 400 GeV

