
A generic anti-QCD tagger

J. A. Aguilar-Saavedra
IFT-UAM/CSIC

3rd RED LHC workshop, May 7th 2019



Motivation in brief

New physics may not give nice leptonic signals

Example of model given at the end

Cascade decays of heavy resonances often give jets as final state object

single cascade

multiple cascade
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It turns out that standard dedicated tools that are used to `tag´ 2-pronged 
decays [from W/Z bosons] are not able to detect multi-pronged decays [stealth 

bosons]

It is compulsory to develop generic tools that are sensitive to various types 
of new physics signals

Main idea: instead of focusing on the signal, which we don’t know how it is, 
we focus on background, which we know well. 

Proof of concept: first generic anti-QCD tagger described here. Further 
possibilities can be developed… 
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Generic anti-QCD tagger

Machine learning techniques allow to build generic anti-QCD taggers that 
efficiently discriminate multipronged jets [considered as signals] against jets 
from quarks and gluons [considered as background].

These taggers use as input a generalised set of variables measuring the jet 
N-subjettiness [i.e. how it looks N-pronged]

of which the commonly used τ21 corresponds to τ21/τ11.

These variables are the input to a neural network that is trained using

signals: jets with 2, 3 and 4-pronged decays, model-agnostic.

background: jets from quarks and gluons.

And the tagger even learns to identify signals for which it is not trained.
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Example: tagger performance for particles with M = 80 GeV
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Example: tagger performance for particles with M = 400 GeV
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Blue: H10 → WW 

Red: H± → tb
Green: H10 → bbbb MA = 80 GeV

Orange: H10 → ZA  MA = 160 GeV

Purple: H10 → tt   six-pronged jet!
Brown: H10 → gg
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The tagger works well for various topologies, even for 
H10 → gg and a six-pronged jet not trained for.
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FAQ #1
Q: Can’t you use τ ratios for multi-pronged jets?

A: Not really. They are not very efficient and, in addition, you don’t know a priori 
which τ ratio you should use. 
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Note that τ ratios actually reduce the signal significance
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FAQ #2

Q: But a dedicated tagger performs better…

A: Certainly, but the generic tagger performs better for other [generic] 
signals different from the one trained on
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FAQ #3

Q: Can’t I just use a 4-pronged dedicated tagger?

A: (sigh) It performs worse even for 4-pronged signals not trained for… 
[NNs are trained on signal jets corresponding to decays with flat phase space]
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FAQ #4

Q: This is nice, but how can I do it? You show one tagger for M = 80, one 
tagger for M = 400… 

A: There are several ways to achieve mass decorrelation:

Preprocessing

Adversarial networks

… [illustrate me, please]
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Decorrelation with preprocessing

Mass-decorrelated taggers that do not shape background can spot signals 
with masses different from those used for training
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In detail:

You need to select some jet mass interval for training but the 
preprocessing of the input makes the tagger insensitive to that
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In detail:

You need to select some jet pT interval for training but the 
preprocessing of the input makes the tagger insensitive to that
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Application

Model: leptophobic Z´ boson [if not, forget about it]

Extra matter required for anomaly cancellation

simplest possiblities: extra quarks [model 1] or leptons [model 2]

Z´ needs new scalar to get mass

simplest and less troublesome: singlet χ

New fermions need mass too… 

singlet χ can do it, and this fixes the U(1)´ hypercharge

And you can have two singlets χ1 and χ2 

in which case you have cascade decays!
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JAAS, Joaquim, coming soon!

Possibility of dark matter
Caron et al. 1807.07921



Generic* search. Tagger fixed to have 102 background rejection.

Z´ → jj, Z´ → tt, Z´→ H3 H4 [stealth bosons] with M = 80 GeV
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Generic* search. Tagger fixed to have 102 background rejection.

Z´ → jj, Z´ → tt, Z´→ H3 H4 [stealth bosons] with M = 400 GeV
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comparison of sensitivity vs standard channels
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